

# **Comprehensive Safety Action Plan**

**Appendices** 

# A. Base Mapping & Safety Analysis Memorandum





# Base Mapping & Safety Analysis

December 2024

# **TABLE OF CONTENTS**

| INTRODUCTION                                | 2  |
|---------------------------------------------|----|
| About Safe Streets and Roads for All (SS4A) | 2  |
| This Report                                 |    |
| EXISTING CONDITIONS & BASE MAPPING          | 4  |
| Population                                  | 4  |
| Transportation Network                      | 9  |
| Environment & Land Use                      | 13 |
| Planning Context                            | 13 |
| SAFETY ANALYSIS                             | 15 |
| Methodology Overview                        | 15 |
| Crash Trends                                | 15 |
| Time-Based Trends                           | 22 |
| Environmental Factors                       | 24 |
| Driver Demographics                         | 26 |
| Behavioral Trends                           | 27 |
| Town-by-Town Analysis                       | 29 |
| CRSMS Analysis                              | 34 |
| Conclusion & Next Steps                     | 42 |
| APPENDIX A: EQUITY ASSESSMENT METHODOLOGY   | 44 |
| APPENDIX B: PLAN REVIEW                     | 46 |
| Introduction                                | 46 |
| Review of Plans                             | 46 |



# INTRODUCTION

The RiverCOG Safe Streets and Roads for All (SS4A) Comprehensive Safety Action Plan aims to enhance road safety and reduce traffic-related injuries and fatalities across the Lower Connecticut River Valley (LCRV) region. The Action Plan will identify safety issues through a comprehensive evaluation of current infrastructure, crash data, and feedback from the community and stakeholders. Guided by this extensive data and community engagement effort, the plan will establish recommendations centering projects that will improve the design and functionality of streets to accommodate all users, implement best practices from similar regions, and foster safer, more accessible transportation networks. The plan will ultimately culminate with a framework and strategy to establish a safer and more connected transportation network for the residents and visitors of the Lower Connecticut River Valley.

# **About Safe Streets and Roads for All (SS4A)**

The 2021 Infrastructure Investment and Jobs Act established the Safe Streets and Roads for All (SS4A) Program to prevent roadway deaths and serious injuries. The program enables county, city, and town governments; transit agencies; metropolitan planning organizations (MPOs); and Tribal governments to enact safety in their communities using the U.S. Department of Transportation's (U.S. DOT) National Roadway Safety Strategy and the embedded Safe System Approach.

The fundamental principle underlying the Safe System Approach is the acknowledgement of human behaviors that require holistic and multipronged



Figure 1 Safe System Approach (Source: USDOT)

approaches to eliminate roadway deaths and serious injuries in a human-focused transportation system. The Safe System Approach believes that establishing safety must be proactive and be addressed by layering safety measures to reduce harm and circumvent human behavior.

In keeping with this approach and the guidance provided by the USDOT, RiverCOG's Comprehensive Safety Action Plan will consider a range of infrastructure and policy recommendations to address the region's most pressing safety concerns.

#### **This Report**

As an initial step in addressing the safety concerns, RiverCOG's project team has completed a base mapping exercise and safety analysis to identify existing conditions. This report outlines the key



takeaways and helps establish a baseline understanding of this region, its transportation needs, the current transportation system, and the people it serves.

In the first section, the region's governance, demographics, transportation, and environmental factors are discussed. The following section provides a review of relevant planning studies. This report concludes with a comprehensive analysis of the region's fatal and serious crashes.



# EXISTING CONDITIONS & BASE MAPPING

This study serves the 443-square mile Lower Connecticut River Valley region, which includes seventeen municipalities:

- Chester
- Clinton
- Cromwell
- Deep River
- Durham
- Fast Haddam

- East Hampton
- Essex
- Haddam
- Killingworth
- Lyme
- Middlefield

- Middletown
- Old Lyme
- Old Saybrook
- Portland
- Westbrook

The rich cultural composition of this region is highlighted by the economic hub and anchor institutions in Middletown, the vibrant tourism industries along the shoreline, and the recreational and environmental diversity along the Connecticut River. The 176,215 people of the Lower Connecticut River Valley region primarily commute by car but have a diversity of transportation options, including the River Valley Transit (RVT) bus network, and the three Shoreline East commuter rail stations. Walking and biking are also common in the densest areas of the region, as well as on recreational trails. These and other characteristics of the region are discussed below.

# **Population**

#### **Density**

Population and employment density in this region is concentrated in Middletown, the region's largest city. Home to 48,152 residents in 2022, Middletown is a vital employment hub with vibrant retail and entertainment districts and key anchor institutions, attracting a large population to work and live in its city. Factors like the proximity of amenities and concentration of housing contribute to heightened transportation activity and the presence of walkable areas. Other areas of population and employment density include communities along the shoreline, such as Clinton and Old Saybrook, and historic village centers, like East Hampton, which historically were the centers of civic and industrial life for the region, outside of Middletown. These trends influence local transportation options, such as RVT whose bus services mirror the density patterns of the region, and Shoreline East, whose three stations connect the region to outside employment centers (see Transit section below).

Maps of population and employment density can be found in the following pages.



Figure 2. Population Density in the RiverCOG Region

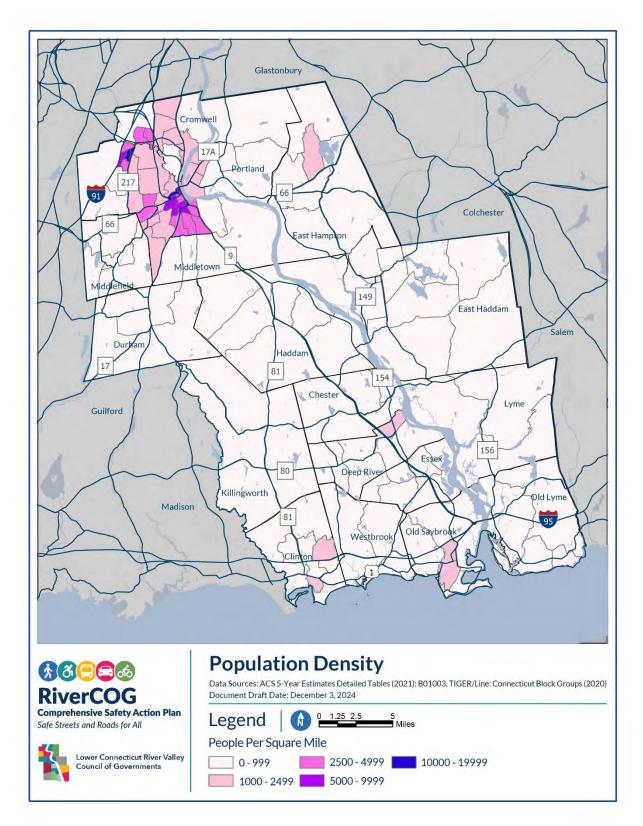
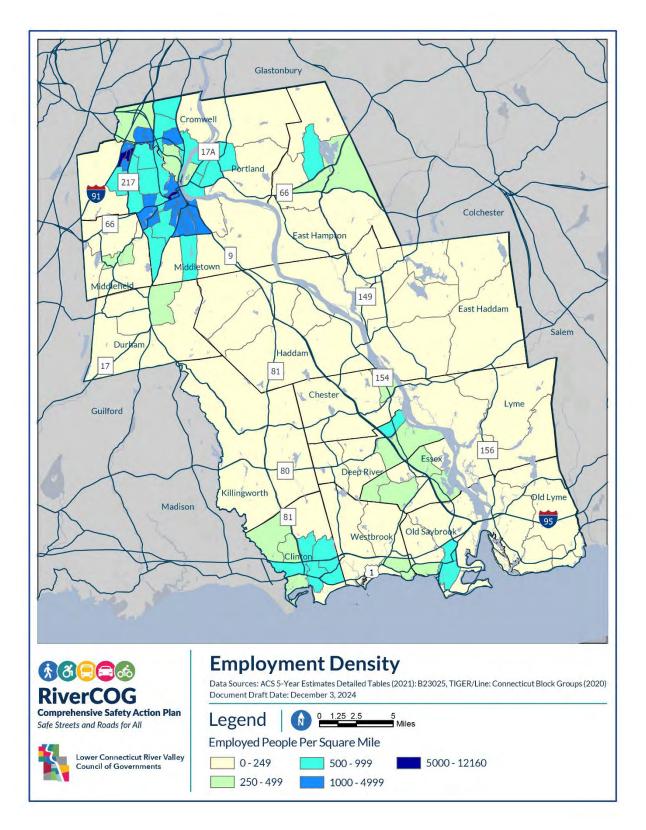






Figure 2. Employment Density in the RiverCOG Region





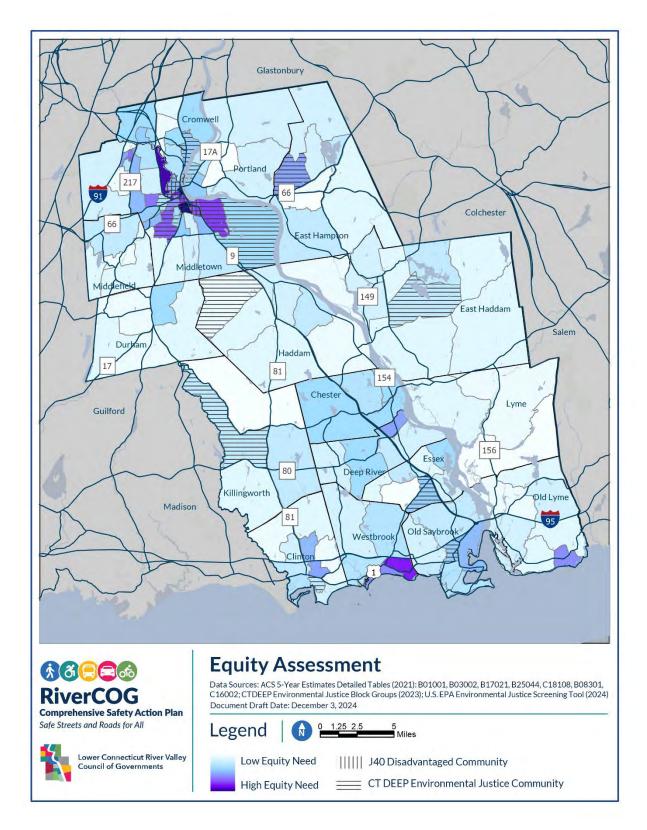
#### **Equity**

Equity assessments are necessary to identify populations that are more likely to use transit, bike, or walk and are thus more susceptible to roadway deaths or serious injuries. Nationwide, people with lower incomes, minorities, and older adults are overrepresented in pedestrian fatalities. This study recognizes this concerning trend, and RiverCOG has integrated equity into the project approach. This equity assessment identifies equity priority areas that will be a factor in project prioritization later in the study. Additionally, this equity assessment will help guide the engagement strategy. Pop-ups, public meetings, and other outreach will emphasize participation from historically underrepresented groups and populations disproportionately impacted by roadway fatalities.

A multi-pronged approach was used to identify equity priority areas. This equity assessment overlaid equity scores calculated from Census Bureau American Community Survey 5-Year Estimates (2021), Justice40 criteria, and Connecticut Department of Energy and Environmental Protection Environmental Justice criteria (CTDEEP) to identify areas in the study area with the highest need. As shown in Figure 4,, the highest equity locations include areas of Middletown, Westbrook, Old Lyme, East Haddam, Haddam, Killingworth, Essex, Old Saybrook, and Clinton due to (1) being placed at or above the 90<sup>th</sup> percentile of calculated equity scores in the region, (2) defined by either Justice40 or CTDEEP criteria, or (3) a combination of the former two criteria.<sup>2</sup>

Middletown scored the highest in the equity assessment due to high populations of people with disabilities, minorities, limited English proficiencies, poverty, and no car ownership. These same locations were defined as environmental justice areas according to Justice40 and CTDEEP criteria. Westbrook also scored high in the equity assessment due to its high populations of people with disabilities, minorities, seniors, limited English proficiencies, and no car ownership. Additionally, Old Lyme had a high equity score due to poverty, limited English proficiency, minorities, seniors, and youth. Parts of East Haddam, Haddam, Killingworth, Essex, Old Saybrook, and Clinton were deemed as environmental justice communities by CT DEEP and its indicators of income, poverty, population rate, employment, income, housing stock, and education.<sup>3</sup> These areas were not determined as equity priority areas by internal equity analysis as these indicators focused on vulnerabilities related to transit-reliance (i.e., age, race, car ownership) rather than socioeconomic vulnerabilities at large.

٠


<sup>&</sup>lt;sup>1</sup> Smart Growth America. Dangerous by Design 2024. <a href="https://smartgrowthamerica.org/dangerous-by-design/#custom-tab-0-3b878279a04dc47d60932cb294d96259">https://smartgrowthamerica.org/dangerous-by-design/#custom-tab-0-3b878279a04dc47d60932cb294d96259</a>

<sup>&</sup>lt;sup>2</sup> The equity assessment methodology can be found in Appendix A.

<sup>&</sup>lt;sup>3</sup> Additional information on CT DEEP's methodology can be found on their website: https://portal.ct.gov/deep/environmental-justice/05-learn-more-about-environmental-justice-communities



Figure 3. Equity Assessment





# **Transportation Network**

This section provides a brief overview of the roadway, transit, and trail network.

#### Roadways

The Lower Connecticut River Valley Region is served by a multitude of major roadways providing vital connections within and throughout the region. Three of the most heavily trafficked roadways are I-95 (running along the shoreline), Route 9 (crosses the region north to south), and I-91 (located in the northwest corner of the region). Other significant State routes include:

- Route 66, connecting Middletown to Meriden and Waterbury in the west and Portland and East Hampton to the east
- Route 17, running southwest from Middletown through Durham
- Route 3, running north-south in Cromwell and Middletown
- Route 81, running north-south in Haddam, Killingworth, and Clinton
- Route 151, running north-south in East Hampton, Haddam, and East Haddam
- Route 156, running north-south in Lyme and Old Lyme
- Route 148, running primarily east-west in Killingworth, Chester, and Lyme
- Route 145, running primarily north-south in Haddam, Chester, and Deep River

Due to the presence of the Connecticut River, the roadway network's development is primarily oriented north-south. There are, however, three major river crossings: the Arrigoni Bridge in Middletown, the East Haddam Swing Bridge (Route 82), connecting Haddam and East Haddam, and the Baldwin Bridge (I-95) between Old Saybrook and Old Lyme.

#### **Transit**

Transit options in the region include River Valley Transit's fifteen bus routes, Amtrak's Northeast Regional and Acela routes, CTtransit's buses, CTrail's Shoreline East route, and the CT Department of Transportation (CTDOT) Chester–Hadlyme Ferry. Buses and trains provide diversity in the mobility options of this region by serving as viable alternatives to single-occupancy vehicle use and by enhancing safety for pedestrian access along the routes they serve. Transit typically provides access to major destinations such as employment centers, commercial plazas, and densely populated neighborhoods, and often serve riders who are also pedestrians. The vulnerable road users that take transit highlight the critical need for safe mobility access because they frequently

<sup>4</sup> Although interstates (I-95 and I-91), Route 9, and private roadways are not included in this study, State routes, U.S. Route 1, and local roadways are included.



walk as part of their trips (e.g., to train stations), have exposed unprotected proximity to vehicles and are more susceptible to roadway related serious injuries and deaths.

RVT services are primarily concentrated in Middletown as there is robust bus service within the city itself and the regional routes originate or end in Middletown. However, it also provides service along the shoreline from Madison westward to New London. North-south connections outside of Middletown into the southern Lower Connecticut River Valley region are provided by the 642, 644, or 645 routes where riders can transfer to the 641, 643, or 645 routes for east-west service along the shoreline.

The RiverCOG region is also served by Amtrak's Northeast Regional and Acela routes and CTrail's Shoreline East route along the shoreline. Amtrak provides broader regional connectivity along the east coast ranging from Boston to Washington D.C. and Norfolk. CTrail provides service along the shoreline from New London to New Haven. The Department of Transportation's Chester – Hadlyme Ferry is the oldest operational ferry in the country and provides seasonal service across the Connecticut River between April 1 through November 30 each year.

#### **Active Transportation & Trails**

In 2019, the Connecticut Department of Transportation (CTDOT) published the Connecticut Active Transportation Plan, which outlined significant bicycle corridors.<sup>5</sup> The plan identifies corridors that most need bicycle infrastructure improvements, either as stand-alone projects or as components of other roadway projects. The following are significant bicycle corridors within RiverCOG's region, the following bicycle corridors:

- Route 1 in Clinton, Westbrook, Old Saybrook, and Old Lyme
- Route 154 in Old Saybrook and from Essex to Middletown
- Route 156 through Lyme into Old Lyme
- Route 99 in Cromwell
- Route 66 in Middletown

- Route 3 in Middletown
- Route 17 in Middletown and Durham
- Route 149 in East Haddam (including the Haddam-East Haddam Swing Bridge)
- Route 17 A in Portland to Middletown (including the Arrigoni Bridge

Bike networks on local roads are limited and frequently unmarked. A notable exception is the Air Line State Park Trail in Portland and East Hampton. Potential trails, such as the Central Connecticut Loop and Lower CT River Valley Heritage Trail Plan, are currently being explored.


<sup>&</sup>lt;sup>5</sup> The state's Active Transportation Plan update has recently begun, and is expected to complete in 2026.



The Lower Connecticut River Valley region is known for its ecological diversity, and the variety of natural preserves along the Connecticut River. The networks of notable trails in this region include those found in the Cockaponset State Forest and Devil's Hopyard State Park, as well as segments of the New England Trail. Generally, off-road trails are outside the scope SS4A Action Plans but are recognized as important destinations that may have sightline issues at roadway crossings.



Figure 4. Regional Roadway & Transit Map





#### **Environment & Land Use**

Environmental and land use factors can influence transportation choice, travel habits, and safety. The Lower Connecticut River Valley leverages its natural resources to provide an abundance of recreational opportunities, but in some cases topography and water resources create sightline, congestion, or infrastructure-related barriers. Moreover, the density and types of land use play a prominent role in reliance on private automobile use, congestion, and speeds. This section highlights major themes, and more detail is documented in the 2021-2031 Lower Connecticut River Valley Plan of Conservation and Development. As concepts for roadway segments are developed later in the study, a more nuanced look at environment and land use will be explored further.

#### **Environment**

The Lower Connecticut River Valley borders the Long Island Sound to the south and is split diagonally by the Connecticut River. Throughout both sides of the Connecticut River, there are multiple state parks and wildlife refuges such as Nehantic State Forest and Cockaponset State Forest. The Gateway Conservation Zone is a thirty-mile zone with special viewshed protections along the hillsides of the lower Connecticut River.

#### Land Use

Land use trends range from dynamic urban centers to open space. Middletown is represented by a diverse variety of land uses, and most notably, holds the greatest concentration of institutions (e.g., Wesleyan University, CT State Community College, and Middlesex Hospital). This speaks to the strengths in creating a walkable area and the diverse availability of amenities in higher density areas. Shoreline communities also offer a diversity of commercial uses, leveraging on their position as popular tourist destinations. Outside of major urban, town, and village centers, open space is the focal land use due to the region's multiple State Parks and Reserves.

# **Planning Context**

A thorough plan review was conducted for regionally significant plans. Key themes of the plans include the need for traffic calming measures in high-crash and high-speed locations, improved pedestrian and bike infrastructure, improved visibility and wayfinding, and campaigns and infrastructure to improve driver behavior.

The key themes and relevant planning documents are outlined in Table 1. A plan review summary can be found in Appendix B.



Table 1 Key Themes from Plan Review

| Table 1 Key Themes from Plan                                                                                   | Traffic<br>calming<br>measures | Improved<br>pedestrian or<br>bike<br>infrastructure | Improved<br>wayfinding<br>and visibility | More<br>sustainable<br>transportation<br>choices | Safety<br>Improvements | Improve<br>driver<br>behavior |
|----------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------|-------------------------------|
| Lower Connecticut<br>River Valley Regional<br>Transportation Safety<br>Plan (2022)                             | ~                              | <b>~</b>                                            | ~                                        | ~                                                | ~                      | ~                             |
| Lower Connecticut<br>River Valley Bicycle and<br>Pedestrian Master Plan<br>(2022)                              | <b>~</b>                       | <b>~</b>                                            | ~                                        | ~                                                | ~                      |                               |
| Lower Connecticut River Valley Plan of Conservation and Development 2021- 2031                                 | <b>~</b>                       | <b>~</b>                                            |                                          | ~                                                |                        |                               |
| Lower Connecticut River Valley 2023-2050 Regional Metropolitan Transportation Plan (2023)                      | ~                              | <b>✓</b>                                            | ~                                        | ~                                                | ~                      | <b>~</b>                      |
| Boston Post Road<br>(Route 1) Corridor Plan<br>Connecticut River to<br>Clinton Western Town<br>Boundary (2015) | <b>~</b>                       |                                                     | <b>~</b>                                 | <b>~</b>                                         | <b>~</b>               |                               |
| Route 81 Corridor Study<br>- Clinton (2019)                                                                    | ~                              | <b>~</b>                                            | <b>~</b>                                 |                                                  | ~                      |                               |
| Route 66 Transportation<br>Study Portland and East<br>Hampton, CT (2020)                                       | <b>~</b>                       | <b>~</b>                                            | ~                                        | ~                                                | <b>~</b>               |                               |
| CT SHSP Strategic<br>Highway Safety Plan for<br>2022-2026 (2022)                                               | <b>~</b>                       | <b>~</b>                                            | ~                                        | ~                                                |                        | <b>~</b>                      |
| VRU Assessment<br>CTDOT Approach<br>(2023)                                                                     |                                | <b>~</b>                                            | ~                                        | ~                                                |                        |                               |



# **SAFETY ANALYSIS**

# **Methodology Overview**

The safety analysis data collection includes the collection of crash data from January 1, 2019, to December 31, 2023, from the Connecticut Crash Data Repository (CTCDR). The crash data was filtered to review crash data to include fatal (K) and serious injury (A) crashes only to align with the Safe Streets and Roads for All (SS4A) program goals of preventing serious injury and fatal crashes. The data set includes all reported crashes on non-interstate and non-freeway CTDOT roadways as well as local roadways throughout the RiverCOG region. Private property, private roadways, and limited access roadways including I-91, I-95, and Route 9 are excluded from the analysis. Crashes that occurred at freeway ramp junctions at state or local roadways were included in the analysis.

#### **Crash Trends**

There were approximately 225 reported KA crashes on state and locally owned and maintained roadways across the region over the period analyzed. Approximately 74% of all KA crashes occurred on state roads, with the remaining 26% occurring on local roadways. The fatal and serious injury crash locations are illustrated in Figure 6.

#### **Vulnerable Road Users**

Vulnerable road users (VRUs) are defined as roadway users who are unprotected by a vehicle making them more prone to injury. VRUs are non-motorized road users and may include pedestrians, bicyclists, wheelchair users, and scooter users; motorcyclists are not considered VRUs for the purposes of the VRU analysis. A review of crashes involving VRUs shows approximately 33 crashes involved pedestrians, bicyclists, or other non-motorists during the analysis period. Approximately 15% were fatal, and 85% resulted in serious injury. The VRU action or circumstance prior to the crash was reviewed to determine any contributing factors that may have led to a crash. Approximately 70% of KA crashes involving pedestrians occurred when crossing a roadway, indicating potential opportunity for new or improved crossings and/or improved or additional facilities for vulnerable road users. Almost half (45%) of all drivers involved in crashes were cited with an infraction or given a verbal or written warning, indicating a potential need for increased driver education. Table 2 summarizes all crashes involving vulnerable road users by severity, light condition, pre-crash action, and driver infraction. Figure 7 illustrates the locations of all VRU crashes that occurred during the five-year analysis period.



Table 2 Vulnerable Road User Summary

| Туре       | Town         | Roadway         | Severity | Light<br>Condition  | Pre-Crash<br>Action              | Infraction         |
|------------|--------------|-----------------|----------|---------------------|----------------------------------|--------------------|
| Pedestrian | Clinton      | Route 1         | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Infraction         |
| Pedestrian | Middlefield  | Lake Rd         | А        | Dark-<br>Lighted    | Adjacent to or<br>In Travel Lane | None taken         |
| Pedestrian | Middletown   | Westlake Dr     | А        | Daylight            | Walking/Cycling<br>on Sidewalk   | None taken         |
| Pedestrian | Middletown   | Route 17        | А        | Dark-<br>Lighted    | Adjacent to or<br>In Travel Lane | Written<br>Warning |
| Bicyclist  | Middletown   | East Main St    | А        | Daylight            | Other                            | Verbal<br>Warning  |
| Bicyclist  | Cromwell     | Route 372       | А        | Daylight            | Crossing<br>Roadway              | Verbal<br>Warning  |
| Pedestrian | East Hampton | North Main St   | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning  |
| Pedestrian | Middletown   | Westfield St    | А        | Daylight            | Crossing<br>Roadway              | Verbal<br>Warning  |
| Pedestrian | Middletown   | Route 3         | К        | Dark-<br>Lighted    | Crossing<br>Roadway              | None taken         |
| Pedestrian | Middletown   | Route 66        | К        | Dark-<br>Lighted    | Crossing<br>Roadway              | None taken         |
| Pedestrian | Middletown   | Country Club Rd | А        | Daylight            | Crossing<br>Roadway              | None taken         |
| Bicyclist  | Westbrook    | Route 166       | К        | Dusk                | Adjacent to<br>Roadway           | None taken         |
| Pedestrian | Old Saybrook | Route 154       | А        | Dark-Not<br>Lighted | Adjacent to or<br>In Travel Lane | Verbal<br>Warning  |
| Bicyclist  | Middletown   | Route 155       | К        | Daylight            | Adjacent to<br>Travel Lane       | None taken         |
| Pedestrian | Middletown   | Route 66        | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning  |
| Pedestrian | Old Lyme     | Route 156       | А        | Daylight            | Crossing<br>Roadway              | None taken         |
| Pedestrian | Old Lyme     | Route 156       | А        | Daylight            | Crossing<br>Roadway              | None taken         |



Vulnerable Road User Summary (Continued)

| Туре       | Town         | Roadway       | Severity | Light<br>Condition  | Pre-Crash<br>Action              | Infraction        |
|------------|--------------|---------------|----------|---------------------|----------------------------------|-------------------|
| Bicyclist  | Middletown   | Route 66      | А        | Daylight            | Crossing<br>Roadway              | None taken        |
| Bicyclist  | Clinton      | Route 1       | А        | Daylight            | In Shoulder or<br>Median         | Verbal<br>Warning |
| Bicyclist  | Haddam       | Route 81      | К        | Dark-Not<br>Lighted | Adjacent to or<br>In Travel Lane | None taken        |
| Pedestrian | Middletown   | Saybrook Rd   | А        | Daylight            | Crossing<br>Roadway              | Verbal<br>Warning |
| Pedestrian | Middletown   | Route 66      | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning |
| Pedestrian | Middletown   | Warwick St    | А        | Daylight            | In Roadway -<br>Other            | None taken        |
| Pedestrian | Middletown   | Main St       | А        | Daylight            | Crossing<br>Roadway              | None taken        |
| Pedestrian | Middletown   | Route 66      | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning |
| Bicyclist  | Middlefield  | Route 66      | А        | Dark-<br>Lighted    | Adjacent to<br>Roadway           | None taken        |
| Pedestrian | Westbrook    | Route 1       | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning |
| Pedestrian | Middletown   | East Main St  | А        | Dark-<br>Lighted    | Crossing<br>Roadway              | Verbal<br>Warning |
| Pedestrian | Cromwell     | Route 99      | А        | Dark-<br>Lighted    | Other                            | None taken        |
| Other VRU  | Chester      | Wig Hill Rd   | А        | Daylight            | Adjacent to or<br>In Travel Lane | Infraction        |
| Bicyclist  | Middletown   | Old Farms W   | А        | Daylight            | In Roadway -<br>Other            | None taken        |
| Pedestrian | Middletown   | Washington St | А        | Daylight            | Crossing<br>Roadway              | None taken        |
| Pedestrian | Middletown   | Walnut St     | А        | Daylight            | Walking/Cycling<br>on Sidewalk   | None taken        |
| Pedestrian | East Hampton | Route 66      | А        | Daylight            | Crossing<br>Roadway              | None taken        |



Figure 5 KA Crashes

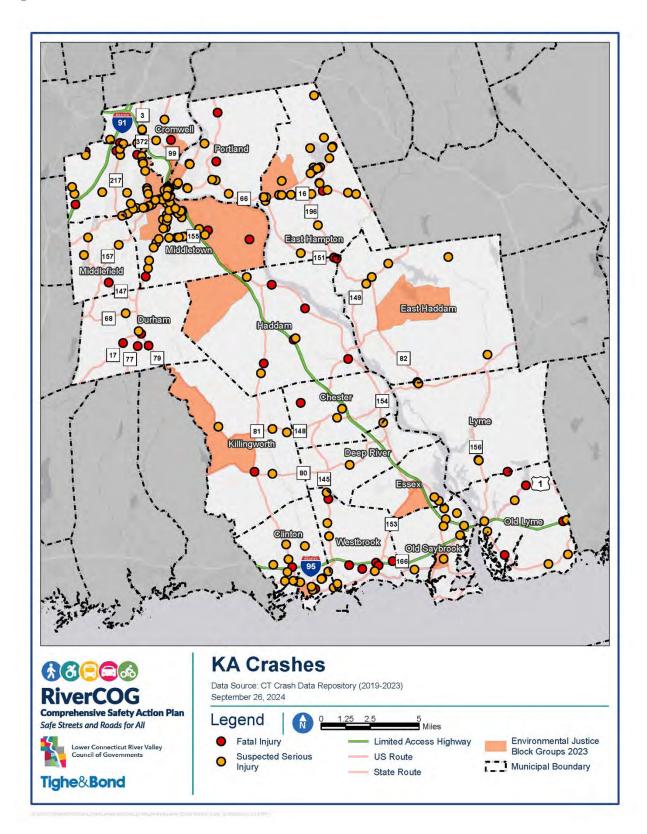
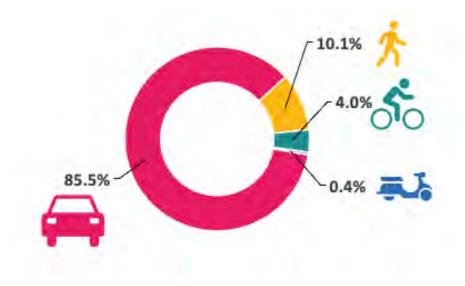





Figure 6 Bicycle and Pedestrian Crashes





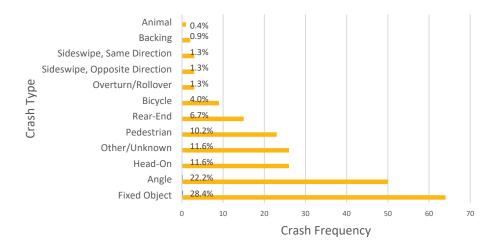

#### Crash Mode

As shown in Figure 8 below, approximately 86% of reported crashes involved a motor vehicle, 10% involved a pedestrian, 4% involved a bicyclist, and 0.4% involved other non-motorized users.





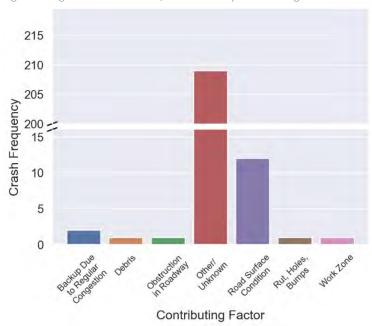
#### **Crash Severity**


As previously stated, only serious injury and fatal crashes were analyzed as part of the safety analysis. Approximately 21% of the 225 total reported crashes (48 crashes) were fatal while the remaining 79% (177 crashes) resulted in serious injuries.

#### Crash Type

Crash types were reviewed to determine any notable trends in KA crashes. Angle (22% of total crashes) and fixed object (28% of total crashes) represent approximately half of all reported crashes. Other key trends include bicycle and pedestrian crashes accounting for approximately 14% of total crashes. Opportunities to reduce fixed object crashes may include the review of potential strategies to decrease roadway departures that may include signs, pavement markings, lighting, guiderail, and/or removal of fixed objects within the roadway clear zone. Angle crashes are typically most prevalent at roadway or driveway intersections. Angle crashes may provide opportunities to reduce potential conflicts with turning vehicles through review of sight distance, traffic signal clearance interval changes, turn lane improvements, and/ or access management review. The frequency of each crash type during the analysis period is shown in Figure 9.




Figure 8 Distribution of KA Crashes Based on the Crash Type



#### **Contributing Factor**

Contributing factors for all KA crashes were reviewed to identify potential circumstances that may be attributable to crashes. A majority of reported crashes did not identify a definitive contributing factor. However, approximately 5% of KA crashes reported road surface condition as being a contributing factor in the crash. The data shows there is an opportunity to improve crash reporting to include contributing factors in order to better understand the root causes of crashes. It is important to note, however, that environmental and behavioral factors discussed in subsequent sections may contribute to crashes. The contributing factors for all KA crashes are presented in Figure 10.

Figure 1. Figure 9 Distribution of KA Crashes by Contributing Factor





#### **Time-Based Trends**

Reviewing data on a time-basis can help to identify certain hours during the day, days during the week, and/or months during year for targeted enforcement, public awareness campaigns, and other targeted strategies. Annual crash trends are useful in measuring year over year trends in crashes.

#### **Yearly Distribution**

Crashes were reviewed on an annual basis to determine if there are any trends over the five-year analysis period. Total KA crashes were shown to remain steady at between 40 and 45 crashes per year between 2019 and 2022. A moderate uptick in KA crashes was seen in 2023 with 58 total KA crashes, up from 43 crashes in 2022. This trend is consistent with statewide crash trends that show a spike in fatal, serious injury, and vulnerable user crashes beginning in 2022 as traffic volumes generally returned to pre-COVID-19 pandemic levels. The yearly distribution of KA crashes is presented in Figure 11.



Figure 10 Yearly Distribution of KA Crashes

#### Monthly Distribution of Crashes

KA crashes were reviewed on a month-by-month basis over the analysis period. Factors such as vacations, weather, and school schedules may influence the number or severity of crashes over the course of a year. The analysis indicates the summer months from June through August experience the highest total number of KA crashes. January through April saw the lowest number of KA crashes over the 12-month period. The monthly distribution of crashes is shown in Figure 12.



35 30 Crash Frequency 25 20 15 10 5 0 March August October January ebruary-April June September November May July December Month ■ K ■ A

Figure 11 Monthly Distribution of KA Crashes (2019-2023)

#### **Daily Crash Distribution of Crashes**

The distribution of KA crashes over the course of a week was reviewed. The data indicates the highest number of crashes on Saturday (23%) and Sunday (17%). Tuesday to Friday experienced between 13% and 16% of total crashes, while Monday experienced a significantly lower percentage of the crashes at 4%. Several factors including commuter travel patterns and social factors may impact the distribution of crashes over the course of a week.

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |
|--------|--------|---------|-----------|----------|--------|----------|
| 17%    | 4%     | 16%     | 14%       | 13%      | 13%    | 23%      |
|        |        |         |           |          |        |          |

#### Time of Day Crash Distribution

The distribution of crashes on an hourly basis on both weekdays and weekends were reviewed to determine if there are crash patterns based on the time of day. The weekday hourly KA crash distribution shows the highest percentages of crashes occurred between 4:00 to 5:00 PM (10%), 6:00 to 7:00 PM (9%), and 7:00 to 8:00 PM (8%), as shown in Figure 13. The weekend time periods between 7:00 to 8:00 AM, 5:00 to 6:00 PM, 8:00 to 9:00 PM, and 9:00 to 10:00 PM experienced the highest hourly rate of crashes, each experiencing 9% of the total daily weekend crashes, as shown in Figure 14.



Figure 12 Weekday Hourly Distribution of KA Crashes

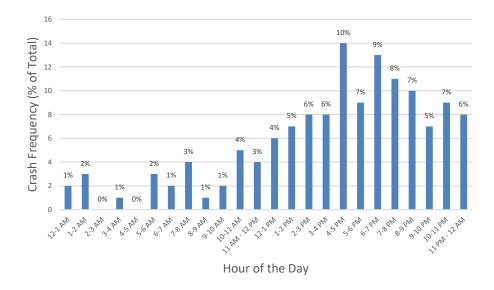
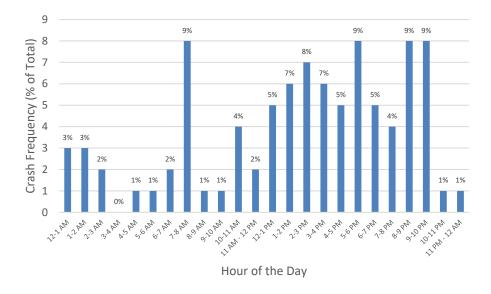
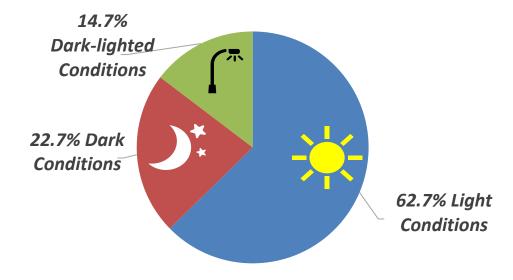




Figure 13 Weekend Hourly Distribution of KA Crashes



#### **Environmental Factors**


# **Light Conditions**

Light conditions at the time of the crash were reviewed to understand any patterns related to roadway lighting. The majority of crashes (63%) occurred in light conditions, 23% occurred in dark conditions, and 15% occurred in dark-lighted conditions. Crashes occurring in light conditions occurred during daytime hours, dark conditions occurred during overnight hours, while dark-lighted conditions occur during overnight hours with street lighting providing improved visibility. With almost a quarter of the crashes occurring in dark conditions with no lighting, there may be an



opportunity to review roadway illumination to determine if new and/ or enhanced street lighting may improve safety for road users. The distribution of KA crashes based on lighting condition is shown in Figure 15.





#### **Weather Condition**

The weather conditions at the time of the crash were reviewed. Ninety-one percent of the KA crashes occurred under clear conditions, indicating that weather is generally not a factor in KA crashes. The following trends were noted:

- 91% of serious injury and fatal crashes occurred in clear conditions
- 8% of serious injury and fatal crashes in rainy conditions
- 3% of serious injury and fatal crashes in icy conditions



#### **Road Surface Condition**

Figure 16 presents the distribution of KA crashes by road surface condition during the analysis period. A majority of crashes (83%) occurred under dry road conditions. Approximately 14% occurred under wet roadway conditions, 3% occurred on snow or ice-covered roadways, and the



remaining 1% on sand-covered roadway. Based on the data, road surface conditions do not appear to be a large contributing factor in KA crashes.

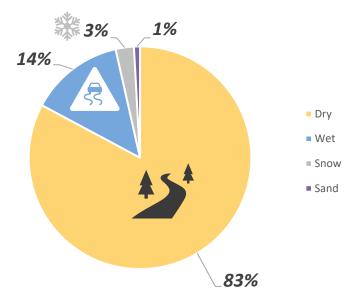



Figure 15 Distribution of KA Crashes by Road Surface Condition

## **Driver Demographics**

Road user demographics were reviewed to determine if any trends exist related to driver age and gender.

#### Driver Age & Gender

Driver age and gender were reviewed in incremental age groups to review if certain age groups were overrepresented in the crash data. While there are no clear outliers in the data, age groups between 16-24 years old, 45-44 years old, and 55-64 years old represent the top three highest crashes by age group. Male drivers consistently accounted for 70-80% of all KA crashes across all age groups. While not the highest proportion of crashes, younger drivers between 16 and 24 may provide an opportunity for increased early driver education to reinforce safe driving behaviors. The spread of crashes over multiple age groups may indicate the need for increased driver education in the years following initial licensure, while the male dominance across all age groups indicates an opportunity to target the demographic for driver safety education. The data is presented in Figure 17.



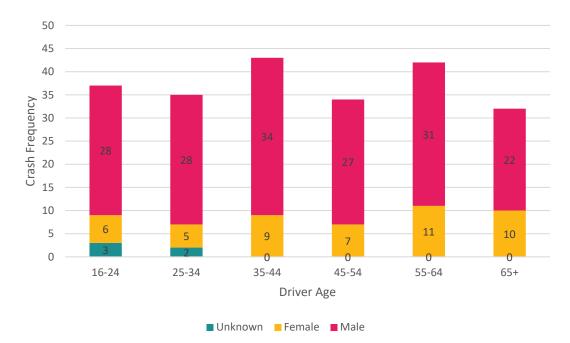
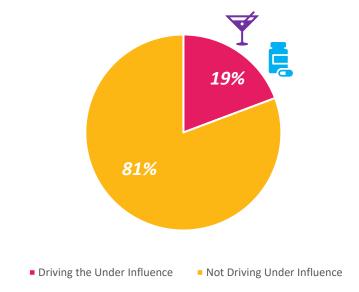



Figure 16 Distribution of KA Crashes based on Driver Age and Gender

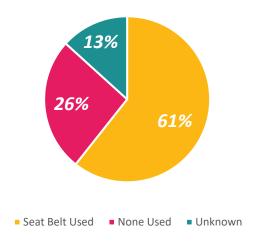
# **Behavioral Trends**


The crash analysis reviewed behavioral trends of both drivers and passengers. Seat belt usage, the influence of alcohol or drugs, and behaviors in work zones were reviewed to determine if any current trends exist.

#### **Driving Under the Influence**

A review of the crash data indicates 19% of drivers involved in KA crashes were reported to be under the influence of medication, drugs, or alcohol at the time of the crash as shown in Figure 18. This number suggests there may be opportunities for increased enforcement, public awareness campaigns, increased driver education, and/or changes in laws or policies to reduce the number of crashes involving drivers under the influence.




Figure 17 Driving Under the Influence KA Crashes



#### Vehicle Restraint System Usage

Seat belt usage for both drivers and passengers were reviewed. The analysis indicates approximately one quarter of occupants involved in KA crashes were not using a seat restraint. Utilizing a seat belt has proven to be an effective tool to prevent ejection from a vehicle. Occupants that are ejected from a vehicle typically have a greater chance of experiencing a serious injury or fatality. Of the 55 total occupants that were reported to not use a seatbelt at the time of the crash, eight (15%) were ejected from their vehicle. The gap in seat belt usage presents an opportunity to increase driver education efforts on the importance of seat belts to minimize the most severe crashes. Figure 19 presents motor vehicle seat belt usage among drivers involved in KA crashes.

Figure 18 Motor Vehicle Seat Belt Usage in Crashes





#### Work Zones

A review of work zone-related crashes indicates three KA crashes occurred within a work zone during the analysis period. While this only represents slightly over 1% of reported KA crashes, public awareness campaigns to bring attention to work zone safety should continue and potentially be expanded.



# **Town-by-Town Analysis**

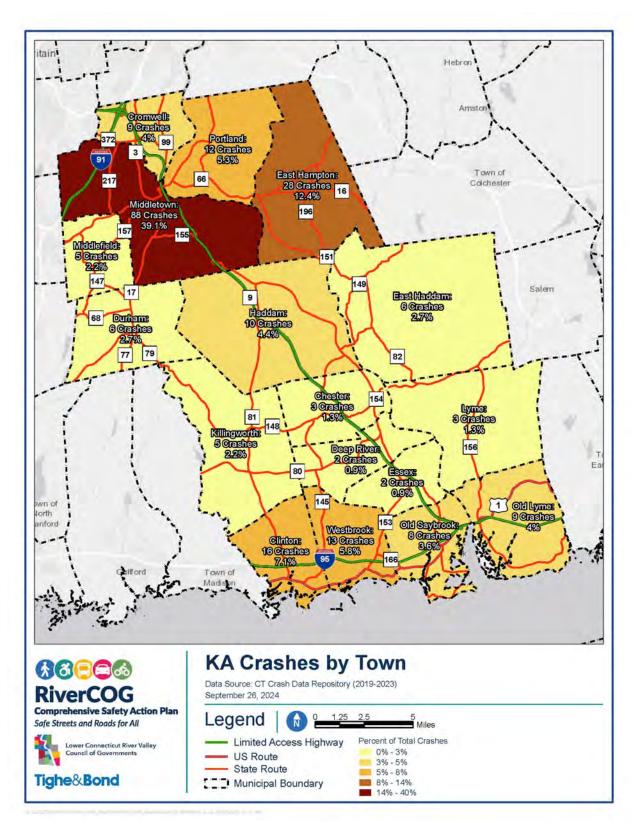

Crash data was reviewed on a town-by-town basis for the 17 member towns in the RiverCOG region. Middletown experienced the highest percentage of total KA crashes within the region at 39%. This is expected given that the city is a dense urban area with the highest population in the region. East Hampton represented 12% of total reported crashes, followed by Clinton, Cromwell, Haddam, Old Lyme, Old Saybrook, Portland, and Westbrook, with each experiencing between approximately 4-7% of the total KA crashes. Chester, Deep River, Durham, East Haddam, Essex, Killingworth, Lyme, and Middlefield each experienced 3% or less of the total KA crashes. Table 3 presents the town-by-town KA crashes ranked as a percentage of all KA crashes in the RiverCOG region. Figure 20 presents the percentages of KA crashes by town graphically on a gradient scale.

Table 3 Town-by-Town Percentage of KA Crashes

| Town         | Total KA Crashes | Percent of KA Crashes |
|--------------|------------------|-----------------------|
| Middletown   | 88               | 39.1%                 |
| East Hampton | 28               | 12.4%                 |
| Clinton      | 16               | 7.1%                  |
| Westbrook    | 13               | 5.8%                  |
| Portland     | 12               | 5.3%                  |
| Haddam       | 10               | 4.4%                  |
| Cromwell     | 9                | 4.0%                  |
| Old Lyme     | 9                | 4.0%                  |
| Old Saybrook | 8                | 3.6%                  |
| Durham       | 6                | 2.7%                  |
| East Haddam  | 6                | 2.7%                  |
| Killingworth | 5                | 2.2%                  |
| Middlefield  | 5                | 2.2%                  |
| Chester      | 3                | 1.3%                  |
| Lyme         | 3                | 1.3%                  |
| Deep River   | 2                | 0.9%                  |
| Essex        | 2                | 0.9%                  |



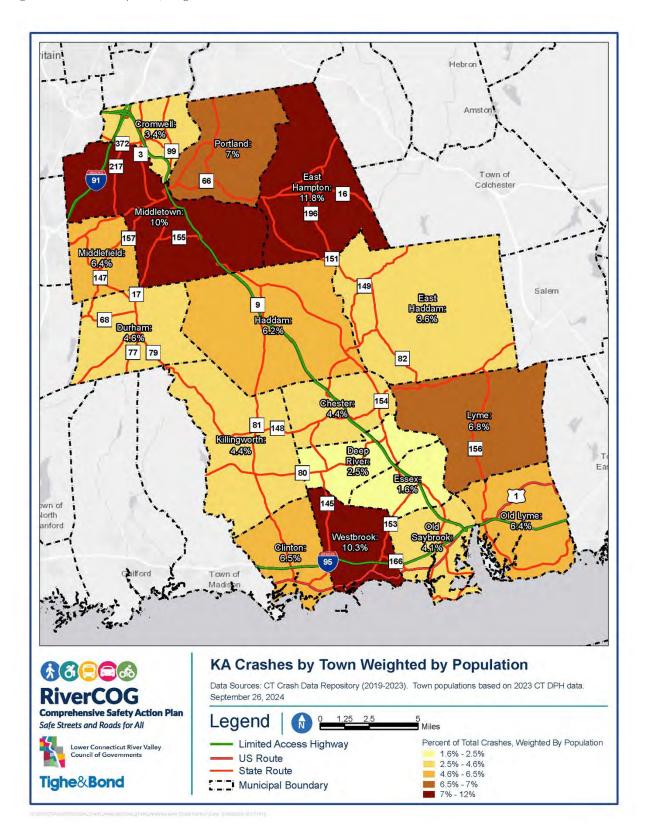
Figure 19 KA Crashes by Town





To account for the variable population among the member towns, the crashes were reviewed based on the population of each municipality. After adjusting for population, East Hampton, Westbrook, and Middletown each experienced between 10-12% of the total percentage of crashes. Portland, Lyme, Clinton, Middlefield, Old Lyme, and Haddam each account for between 6-7% of total crashes based on population. This weighted analysis can help to identify towns with lower populations that may exhibit a proportionally higher crash rate as compared to towns with larger populations. East Hampton and Portland may see a higher proportion of crashes despite lower populations based on the number of roadways within each town that provide regional connectivity: Route 66 in Portland and East Hampton provide the primary east to west connection between Route 9 to the west and Route 2 to the east. East Hampton also includes key routes such as Route 16, which extends between Route 66 and the Route 2/ Route 11 interchange to the east and Route 151 which runs from Route 66 to the south into East Haddam. Shoreline towns including Westbrook, Clinton, and Old Lyme may trend higher due to higher traffic volumes and more commercial activity along U.S. Route 1 as compared to other roadways in the region. The full town-by-town KA crashes weighted to account for population are shown in Table 4. The percentage of weighted KA crashes by town are shown graphically on a gradient scale in Figure 21.

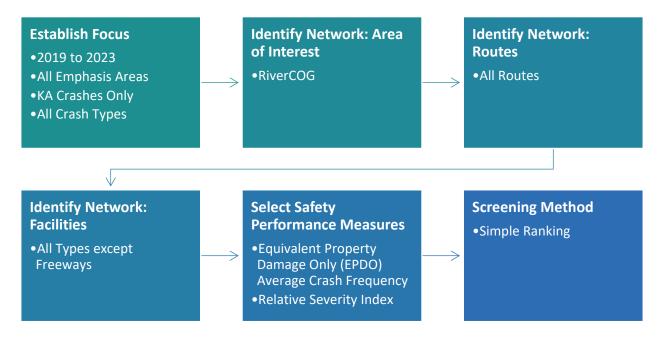



Table 4 Town-by-Town Percentage of KA Crashes Weighted for Population

| Town         | Total KA<br>Crashes | Population <sup>1</sup> | Percent of Total<br>KA Crashes | KA Crashes per<br>Person | Weighted<br>Percentage |
|--------------|---------------------|-------------------------|--------------------------------|--------------------------|------------------------|
| East Hampton | 28                  | 12,989                  | 12.4%                          | 0.0022                   | 11.8%                  |
| Westbrook    | 13                  | 6,881                   | 5.8%                           | 0.0019                   | 10.3%                  |
| Middletown   | 88                  | 47,984                  | 39.1%                          | 0.0018                   | 10.0%                  |
| Portland     | 12                  | 9,428                   | 5.3%                           | 0.0013                   | 7.0%                   |
| Lyme         | 3                   | 2,409                   | 1.3%                           | 0.0012                   | 6.8%                   |
| Clinton      | 16                  | 13,402                  | 7.1%                           | 0.0012                   | 6.5%                   |
| Middlefield  | 5                   | 4,257                   | 2.2%                           | 0.0012                   | 6.4%                   |
| Old Lyme     | 9                   | 7,696                   | 4.0%                           | 0.0012                   | 6.4%                   |
| Haddam       | 10                  | 8,773                   | 4.4%                           | 0.0011                   | 6.2%                   |
| Durham       | 6                   | 7,204                   | 2.7%                           | 0.0008                   | 4.6%                   |
| Killingworth | 5                   | 6,254                   | 2.2%                           | 0.0008                   | 4.4%                   |
| Chester      | 3                   | 3,761                   | 1.3%                           | 0.0008                   | 4.4%                   |
| Old Saybrook | 8                   | 10,571                  | 3.6%                           | 0.0008                   | 4.1%                   |
| East Haddam  | 6                   | 8,987                   | 2.7%                           | 0.0007                   | 3.6%                   |
| Cromwell     | 9                   | 14,363                  | 4.0%                           | 0.0006                   | 3.4%                   |
| Deep River   | 2                   | 4,454                   | 0.9%                           | 0.0004                   | 2.5%                   |
| Essex        | 2                   | 6,802                   | 0.9%                           | 0.0003                   | 1.6%                   |
| TOTAL        | 225                 | 176,215                 | 100.0%                         | 0.0183                   | 100%                   |

<sup>&</sup>lt;sup>1</sup>Population based on 2023 Connecticut Department of Public Health (DPH) data




Figure 20 KA Crashes by Town, Weighted





# **CRSMS** Analysis

The Connecticut Roadway Safety Management System (CRSMS) was utilized as part of the safety assessment to identify intersections or segments within the region that may show specific safety concerns. The Network Screening tool was utilized to identify and rank a set of sites. The following inputs were assumed:



The sites were ranked and reviewed both in terms of Equivalent Property Damage Only (EPDO) Average Crash Frequency and Relative Severity Index.

## Screening Methodology

Within the site analysis tool, there are eight performance measures that may be used to review the sites. The Equivalent Property Damage Only (EPDO) Average Crash Frequency and Relative Severity Index locations were reviewed and screened to develop a list of the top 10 sites across the region that will ultimately form the High Injury Network.

#### Equivalent Property Damage Only (EPDO) Average Crash Frequency

The sites were first ranked by EPDO Average Crash Frequency. Because the study primarily focuses on addressing KA crashes, this performance method was determined to be appropriate as it considers crash severity. The EPDO method assigns a weighting factor to each crash based on crash severity as outlined on the KABCO scale, the scale utilized to assign injury severity in crash reporting. A mean comprehensive cost per crash is then assigned to each type of crash. The mean comprehensive cost per crash for each crash type was developed by the Federal Highway Administration (FHWA) in 2001 dollars. The CRSMS adjusts these costs annually to correct for



inflation based on the Consumer Price Index (CPI) and Employment Cost Index (ECI) on an annual basis to reflect current economic conditions. The current mean comprehensive cost per crash and weighting factors by crash severity utilized in the CRSMS are summarized in Table 5.

Table 5 EPDO Weighting Factors

| Severity                     | Mean Comprehensive Cost (per crash) | Weight Factor |
|------------------------------|-------------------------------------|---------------|
| K – Fatal Injury             | \$6,415,389                         | 574           |
| A - Suspected Serious Injury | \$338,576                           | 30            |
| B - Suspected Minor Injury   | \$123,646                           | 11            |
| C - Possible Injury          | \$69,541                            | 6             |
| O – No Apparent Injury       | \$11,186                            | 1             |

#### Relative Severity Index

The sites were also ranked using the Relative Severity Index (RSI) for comparison to the EPDO ranking. The RSI is similar to the EPDO as they both consider crash severity. However, the RSI also accounts for crash severity *and* crash type and applies a cost to each crash type per site for both segments and intersections. Like the EPDO ranking, the CRSMS adjusts crash costs based on the CPI and ECI to reflect current economic conditions. The most recent data for segment mean comprehensive cost per crash and weighting factors by crash type utilized in the CRSMS are summarized in Table 6. The current intersection mean comprehensive cost per crash and weighting factors by crash type utilized in the CRSMS are summarized in Table 7.

Table 6 RSI Segment Crash Costs

| Crash Type                                    | Mean Comprehensive Cost per Crash (RSI<br>Costs) |
|-----------------------------------------------|--------------------------------------------------|
| Front to Front/Head-on                        | \$596,355.00                                     |
| Pedestrian/Bike                               | \$457,787.00                                     |
| Overturn/Rollover                             | \$380,945.00                                     |
| Fixed Objects                                 | \$149,919.00                                     |
| Total Single-Vehicle Crashes                  | \$143,179.92                                     |
| Angle and Multi-Other                         | \$88,213.00                                      |
| All Other Categories                          | \$86,929.00                                      |
| Total Multi-Vehicle Crashes                   | \$70,667.75                                      |
| Sideswipe (Both Same and Opposite Directions) | \$53,282.40                                      |
| Front to Rear                                 | \$46,945.00                                      |



Table 7 RSI Intersection Crash Costs

| Crash Type RSI                           | RSI for Signalized<br>Intersections | RSI for Unsignalized intersections |
|------------------------------------------|-------------------------------------|------------------------------------|
| Front to Front                           | \$37,269                            | \$74,519                           |
| Front to Rear                            | \$41,383                            | \$20,036                           |
| Sideswipe (Same and opposite directions) | \$53,284                            | \$53,284                           |
| Angle                                    | \$74,157                            | \$96,063                           |
| Multi-Other                              | \$87,011                            | \$87,011                           |
| Total Multi-vehicle Crashes              | \$54,086                            | \$47,764                           |
| Fixed Objects                            | \$149,919                           | \$149,919                          |
| Non-Fixed Object                         | \$87,011                            | \$87,011                           |
| Overturn/Rollover                        | \$87,011                            | \$87,011                           |
| Jackknife                                | \$87,011                            | \$87,011                           |
| Non-collision Other                      | \$87,011                            | \$87,011                           |
| Single-Other                             | \$87,011                            | \$87,011                           |
| Total Single-vehicle Crashes             | \$123,627                           | \$136,291                          |

## High Injury Network

Following the ranking of sites based on EPDO and RSI, the sites were screened based on the following criteria (in order of weighting) to generate a list of the top 10 sites that have been denoted as the High Injury Network (HIN):

- Sites with overrepresented KA crashes
- Overlapping sites ranked high for both EPDO and RSI
- High EPDO ranking
- Exclusion of sites with known ongoing or planned projects

A desktop review of each site was then conducted to identify key characteristics or factors that may be contributing to crashes at these sites. The High Injury Network locations resulting from the CRSMS analysis are identified in Table 8 and shown graphically in Figure 22.

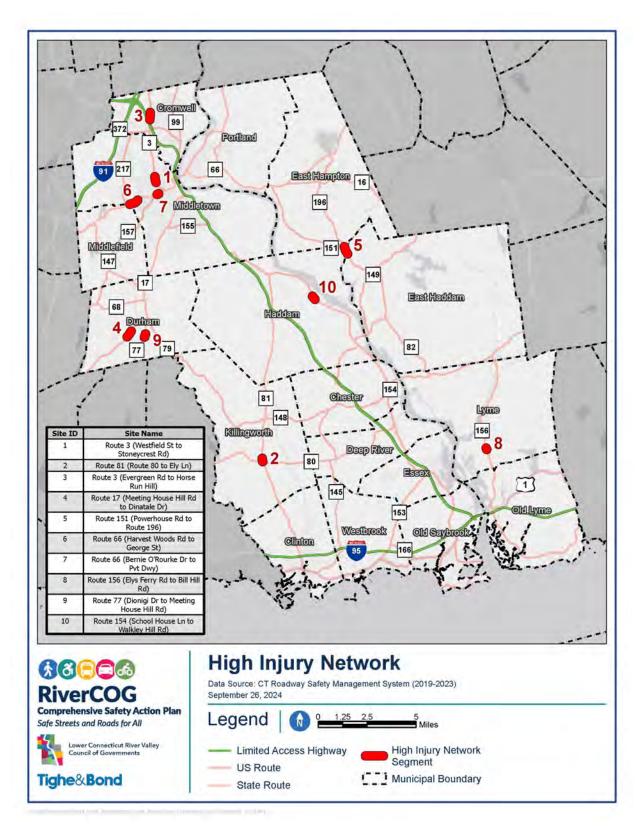



Table 8 High Injury Network Site Locations

| Site<br>ID | Site Name                                             | Town(s)                     | EPDO<br>Rank | RSI<br>Rank | К | Α | Site Characteristics                                                                     |
|------------|-------------------------------------------------------|-----------------------------|--------------|-------------|---|---|------------------------------------------------------------------------------------------|
| 1          | Route 3 (Westfield<br>St to Stoneycrest<br>Rd)        | Middletown                  | 5            | 3           | 1 | 0 | Mid-block Crossing<br>Transit Stops<br>Older Traffic Signal                              |
| 2          | Route 81 (Route 80<br>to Ely Ln)                      | Killingworth                | 10           | 11          | 1 | 0 | Wide driveway curb cuts<br>Horizontal Curves<br>Narrow Shoulders                         |
| 3          | Route 3 (Evergreen<br>Rd to Horse Run<br>Hill)        | Cromwell                    | 19           | 3           | 1 | 0 | Straight Roadway Segment<br>Older Traffic Signal                                         |
| 4          | Route 17 (Meeting<br>House Hill Rd to<br>Dinatale Dr) | Durham                      | 19           | 3           | 1 | 1 | Centerline Rumblestrips<br>Horizontal Curve<br>Passing Zone                              |
| 5          | Route 151<br>(Powerhouse Rd to<br>Route 196)          | East Haddam<br>& Haddam     | 23           | 11          | 1 | 3 | Horizontal Curves Skewed Intersecting Road Vertical Rock Face No Centerline Rumblestrips |
| 6          | Route 66 (Harvest<br>Woods Rd to<br>George St)        | Middlefield &<br>Middletown | 24           | 16          | 1 | 0 | Wide Cross Section<br>Transit Stop<br>Commercial Driveways<br>High Speeds                |
| 7          | Route 66 (Bernie<br>O'Rourke Dr to Pvt<br>Dwy)        | Middletown                  | 2            |             | 1 | 2 | Railroad Overpass<br>Steep Downgrade<br>Wide Curb Cuts                                   |
| 8          | Route 156 (Elys<br>Ferry Rd to Bill Hill<br>Rd)       | Lyme                        | 4            |             | 1 | 1 | Horizontal Curve<br>Skewed Intersecting Road                                             |
| 9          | Route 77 (Dionigi<br>Dr to Meeting<br>House Hill Rd)  | Durham                      | 11           |             | 1 | 1 | Horizontal Curve<br>Centerline Rumblestrips                                              |
| 10         | Route 154 (School<br>House Ln to<br>Walkley Hill Rd)  | Haddam                      | 15           |             | 1 | 1 | Mid-block Crossing<br>Centerline Rumblestrips<br>Library & Senior Center<br>Transit Stop |



Figure 21 High Injury Network





## Critical Crash Rate - Top 25 Locations

The Critical Crash Rate was also considered when identifying locations for the High Injury Network. The CRSMS does not isolate KA crashes under this analysis; rather, the Critical Crash Rate must consider all crash severities. This analysis may be useful in identifying locations with high crash rates on higher traffic volume roadways that may not appear in the high severity locations shown in the High Injury Network. The benefits of the Critical Crash Rate methodology include the following:

- Reduces exaggerated effect of sites with low volumes
- Considers variance in crash data
- Establishes a threshold for comparison

The top 25 Critical Crash Rate locations are intended to provide additional locations for consideration during project selection. The top 25 list includes several sites along the shoreline towns that are not as well represented in the EPDO and RSI analysis due to the higher traffic volumes in this area and due to the impact of reviewing all crash severities. The top 25 sites are tabulated in Table 9 and shown graphically on Figure 23.

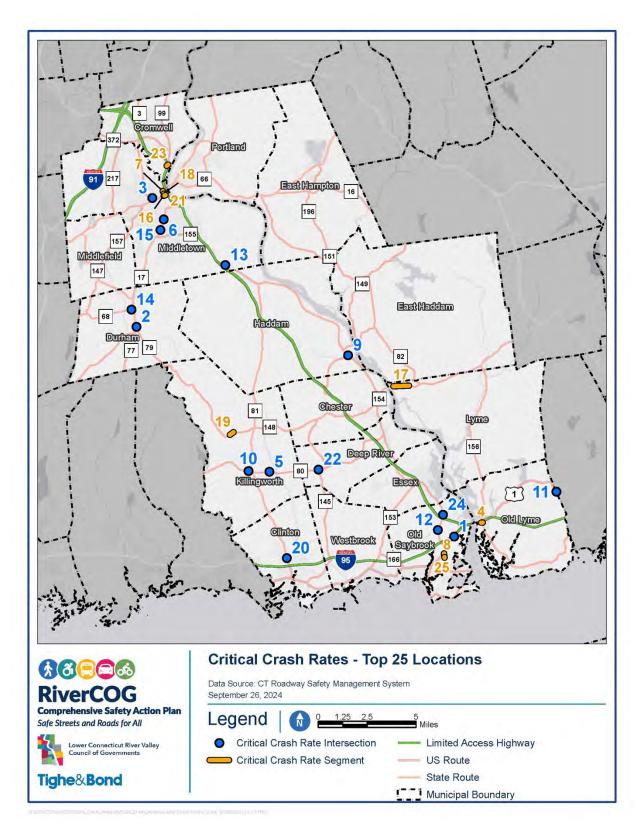



Table 9 Critical Crash Rate - Top 25 Site Locations

| Rank | Site Name                             | Town         | Туре         | Total Crashes |
|------|---------------------------------------|--------------|--------------|---------------|
| 1    | US-1 and SR-628                       | Old Saybrook | Intersection | 33            |
| 2    | CT-79 and Higganum Rd                 | Durham       | Intersection | 35            |
| 3    | CT-3 and Liberty St No 2              | Middletown   | Intersection | 31            |
| 4    | US-1 and I-95 NB Exit 70 Off-ramp     | Old Lyme     | Segment      | 14            |
| 5    | CT-80 and Roast Meat Hill Rd          | Killingworth | Intersection | 22            |
| 6    | CT-17 and Farm Hill Rd                | Middletown   | Intersection | 27            |
| 7    | CT-66 (Rappallo Ave to Kings Ave      | Middletown   | Segment      | 14            |
| 8    | CT-154 (Elm St to US-1)               | Old Saybrook | Segment      | 28            |
| 9    | CT-154 and CT-82                      | Haddam       | Intersection | 20            |
| 10   | CT-80 and Old Deep River Tpk No 2     | Killingworth | Intersection | 8             |
| 11   | US-1 and Four Mile River Rd           | East Lyme    | Intersection | 11            |
| 12   | CT-154 and Bokum Rd                   | Old Saybrook | Intersection | 16            |
| 13   | CT-154 and Freeman Rd                 | Middletown   | Intersection | 10            |
| 14   | CT-68 and Maple Av                    | Durham       | Intersection | 27            |
| 15   | CT-17 and Highland Av                 | Middletown   | Intersection | 34            |
| 16   | CT-66 (Wells Fargo Exit to Main St)   | Middletown   | Segment      | 23            |
| 17   | CT-148 (Great Hill Rd to Day Hill Rd) | Lyme         | Segment      | 4             |
| 18   | CT-66 (Washington St to Ferry St)     | Middletown   | Segment      | 31            |
| 19   | CT-148 (Beckwith Rd to Birch Mill Rd) | Killingworth | Segment      | 6             |
| 20   | CT-81 and Walnut Hill Rd              | Clinton      | Intersection | 12            |
| 21   | SR-545 (Main St to Melilli Plaza)     | Middletown   | Segment      | 13            |
| 22   | CT-80 and CT-145                      | Deep River   | Intersection | 9             |
| 23   | SR-901 (Main St to CT-9 Overpass)     | Cromwell     | Segment      | 2             |
| 24   | CT-154 and Essex Rd                   | Old Saybrook | Intersection | 9             |
| 25   | CT-154 (Elmwood St to Dudley Ave)     | Old Saybrook | Segment      | 8             |



Figure 22 Critical Crash Rate - Top 25





# **Conclusion & Next Steps**

The crash data collection and safety analysis identified crash patterns based on crash type, severity, environmental conditions, temporal trends, driver demographics, driver behavior as well as a review of crashes on a town-by-town basis, all with an overarching focus on KA crashes and crashes involving VRU. The key themes and patterns identified will aim to address existing safety deficiencies. The safety analysis also included the utilization of the CRSMS to develop a High Injury Network and high crash rate locations. The High Injury Network and trend data identified in the safety analysis will serve as the basis for identifying potential projects during the project selection phase of the project.





# APPENDIX A: EQUITY ASSESSMENT METHODOLOGY

Calculated equity scores were determined by aggregating scores that corresponded to each of the seven indicators (minority, poverty, LEP, disability, elderly, youth, and zero car). Scores for each indicator ranged from zero to four, where zero would indicate a Block Group had a value lower than the regional average.

Table 10 Equity Analysis Indicators

| Indicator                   | Regional Average |
|-----------------------------|------------------|
| Minority                    | 17.4%            |
| Below Poverty Level         | 6.3%             |
| Limited English Proficiency | 2.4%             |
| People with a Disability    | 10.8%            |
| Seniors                     | 20.7%            |
| Youth                       | 17.6%            |
| Zero Vehicle Ownership      | 4.8%             |

Each indicator score value above zero would be defined based on the distribution of values each Block Group in the region had. Indicators were weighed equally. The highest overall equity score a Block Group could be assigned was 28. Tables used from 2017-2021 American Community Survey 5-Year Estimates were: B01001, B03002, B25044, B17021, B08301, C18108, and C16002.

Justice40 and CTDEEP were included in the equity assessment to understand which communities were deemed as disadvantaged according to federal and state guidelines. Census Tracts are deemed as disadvantaged by Justice40 criteria if they were at or above the threshold for environmental and socioeconomic burdens, completely surrounded by disadvantaged communities and were at or above the 50<sup>th</sup> percentile for low income, or Federally Recognized Tribes.

Block Groups for CTDEEP were categorized as disadvantaged if 30% or more of the population was below 200% of the federal poverty level, per CT State statute 22a-20a which defines "environmental justice community" as "(A) a United States census block group, as determined in accordance with the most recent United States census, for which thirty per cent or more of the population consists of low income persons who are not institutionalized and have an income below two



hundred per cent of the federal poverty level, or (B) a distressed municipality, as defined in subsection (b) of section 32-9p."



# **APPENDIX B: PLAN REVIEW**

## Introduction

This document summarizes the key findings from the plan review. The list of plans includes the following:

- Lower Connecticut River Valley Regional Transportation Safety Plan (2022)
- Lower Connecticut River Valley Bicycle and Pedestrian Master Plan (2022)
- Lower Connecticut River Valley Plan of Conservation and Development 2021-2031
- Lower Connecticut River Valley 2023-2050 Regional Metropolitan Transportation Plan (2023)
- Boston Post Road Corridor Plan Connecticut River to Clinton Western Town Boundary (2015)
- Route 81 Corridor Study (2019)
- Route 66 Transportation Study Portland and East Hampton, CT (2020)
- Connecticut Strategic Highway Safety Plan for 2022-2026 (2022)
- Vulnerable Road User (VRU) Assessment CTDOT Approach (2023)

#### **Review of Plans**

# Lower Connecticut River Valley Regional Transportation Safety Plan (2022)

The Lower Connecticut River Valley Regional Transportation Safety Plan (2022) aims to reduce crashes by defining and outlining countermeasures to the leading emphasis areas of these crashes. Locations were identified to guide the prioritization of projects with the greatest impact on crash reduction and identify funding opportunities to implement these measures. Locations with their key issues that have the highest frequency and most severe crashes during 2015-2019 are:

- CT-3 between Rose Circle and Westfield Street (Middletown): additional signage with more visibility to address front-to-rear crashes
- CT-81 between Hurd Bridge Road and Oakwood Lane (Clinton): treatments to increase friction and decrease sharpness of curves to counter curve crashes
- CT-17/CT-66 between CT-17A and Perry Avenue (Portland): additional signage with more visibility to curb front-to-rear crashes and speed feedback signage to hinder speeding



- CT-147 between Lakeview Place and Powder Hill Road (Middlefield): treatments to increase friction to decrease curve crashes and speed feedback signage to discourage speeding
- CT-17 between Pinewood Terrace and Ward Street (Middletown): turning lanes and limit driveways to decrease crashes at driveways and increase signage to aid wayfinding at the Highland Ave intersection

# Lower Connecticut River Valley Bicycle and Pedestrian Master Plan (2022)

The Lower Connecticut River Valley Bicycle and Pedestrian Master Plan (2022) identifies opportunities to establish safe and connective pedestrian and cyclist access in the region. Key location-based recommendations of the plan include:

- Village Centers: Expanding pedestrian facilities to connect to residential neighborhoods, creating new connections to improve connectivity and can activate open space and trail resources for tourism
- Beach Community: Designing roads to allow for safe multimodal use, with acknowledgement of the high volumes of non-motorized users in beach neighborhoods
- Regional Connections: Expanding and closing gaps in regional greenway networks to enhance multimodal connections and boost recreation and tourism
- State Route Commercial Node: Improving bicycle and pedestrian facilities to make commercial hubs safer and encourage more trips to be made

These recommendations can address the high crash locations resulting from high volumes of traffic and population densities in urban areas in Middletown and Cromwell and the shoreline communities in Old Saybrook, Westbrook, and Clinton. Between 2017 and injury 2019, there was one fatal crash involving a bicycle and three fatal crashes involving a pedestrian in Clinton, Westbrook, Old Saybrook, and Old Lyme.

# Lower Connecticut River Valley Plan of Conservation and Development 2021-2031

The Lower Connecticut River Valley Plan of Conservation and Development 2021-2031 develops a vision for the region that creates vibrancy for all who live, work, and play in these communities, as well as recommendations to advance to this vision. Key recommendations of the plan include:

 Addressing safety and traffic congestion on Route 9 through partnership with CTDOT and the City of Middletown



- Creating a local and regional bike network that provides safe connections with convenient amenities
- Developing safe active transportation routes for children to go to school

# Lower Connecticut River Valley 2023-2050 Regional Metropolitan Transportation Plan (2023)

The Lower Connecticut River Valley 2023-2050 Regional Metropolitan Transportation Plan (2023) develops the region's long-term transportation goals and priorities to ensure it meets current and future regional needs. This plan takes into account changing demographic, economic, development, and environmental trends. Key recommendations of the plan include:

- Improve safety for road users by reducing roadway related fatalities and serious injuries
- Advance multi-modal plans for enhanced pedestrian and bicycle access through extension of sidewalks, implementation of multi-use trails, and safer connections throughout communities
- Promote a safer and efficient roadway system by implementing improvements for lower congestion, better sightlines, and clear navigation for wayfinding

# Boston Post Road Corridor Plan Connecticut River to Clinton Western Town Boundary (2015)

Boston Post Road Corridor Plan: Connecticut River to Clinton Western Town Boundary (2015) seeks to enhance travel access and economic growth along the corridor in the towns of Clinton, Westbrook, and Old Saybrook. Key recommendations of the plan include improving traffic flow, safety, and multimodal travel in locations on Route 1 by:

- Converting the 5-way intersection to 4-way by closing Stevens Road to facilitate safe navigation (Clinton)
- Decreasing the flow of traffic by narrowing the access points at Essex Street (Westbrook)
- Changing the 4-lane road to 3 lanes from Stage Road to Staples intersection to allow for space for other modes and de-center vehicles on the road (Old Saybrook)
- Improving intersections on Elm, Main, and Stage to support traffic flows and mitigate congestion (Old Saybrook)

These measures will ultimately address issues that arise from the following locations with the highest crash rates during 2009-2011 at:

 Grove Street to Liberty Park Center and Liberty Park Center to Beach Park Road (Clinton) influenced by high turning vehicle movement and higher speed limits



- Ledge Road to Mill Rock Road (Old Saybrook) due in part by proximity to Old Saybrook High School, pedestrian traffic from the train station, and multi-lane roads and limited gaps to change lanes or turn
- Eckford Avenue to Westbrook Heights (Westbrook) likely from limited visibility on roadways

## Route 81 Corridor Study (2019)

The Route 81 Corridor Study (2019) identifies opportunities to create greater inclusion of the corridor in Clinton with a complete street that meets existing needs and enhances and supports sustainable growth of transportation, quality of life, and economic development. Based on crash data during 2013 to 2017, the highest crash rate activity occurred at the following intersections on Route 81 and interventions are recommended to improve the transportation environments at:

- North High Steet: The I-95 interchange had the highest crash rates in the study area (mostly rear-end collisions) due to the prevalence of many signalized intersections. To allow for pedestrian use, recommendations include enhancing sidewalk connections, implementing signage, and establishing facilities
- I-95 Southbound Interchange: This is a heavily utilized and congested intersection that should install more pedestrian facilities and infrastructure for safe pedestrian access
- CTDOT Commuter Parking Lot Driveway: This lot is adjacent to I-95 and neighbors the outlet mall and commercial corridor. Pedestrian access is limited and safe connections should be made with infrastructure and pedestrian facilities.
- Hurd Bridge Road and Rocky Ledge Drive: Crashes have been reported here likely due to the high traffic volumes and the sharp curvature that impacts visibility. To counter this, roadway shoulders should be extended to at least five feet and the lanes should be reduced to 11 feet to allow for more space for pedestrians, cyclists, and service vehicles.

# Route 66 Transportation Study Portland and East Hampton, CT (2020)

The Route 66 Corridor Planning Study (2020) aims to create "complete streets" that support inclusion of the corridor with the broader community in Portland and East Hampton and alleviates congestion, enhances safety and accessibility, and promotes multimodal use. Key recommendations of the plan include: developing a traffic management plan to mitigate the high volumes of traffic and speeding along Route 66. Interventions are recommended for the following along Route 66:

• Intersection at Route 17A (Main Street) which had the most collisions during 2015-2017 likely due to high volumes of traffic and high speeds.



- High Street/ Maple Street and Route 196/ East Hampton/Marlborough Town Line which had a high number of collisions due to the long spacing of traffic signals and steep roadways
- East Hampton Shopping Center driveway and Route 196 which had a high number of collisions due to the large number of access points impacting navigation

# Connecticut Strategic Highway Safety Plan for 2022-2026 (2022)

The Connecticut Strategic Highway Safety Plan (2022) aims to reduce 15% of roadway related fatalities and serious injuries by 2026. Key recommendations addressing the major emphasis areas for roadway safety include:

- Improving infrastructure through measures for better roadway navigation, conditions, and visibility to reduce collisions and crashes at intersections.
- Curtailing driver behavior through increased viability of other modal options, use of traffic calming measures, and driver safety campaigns.
- Protecting pedestrians through robust sidewalk networks, improved visibility for drivers, and safe buffers from cars.

# Vulnerable Road User (VRU) Assessment CTDOT Approach (2023)

The CTDOT VRU Safety Assessment (2023) determines the safety performance of vulnerable road users, such as pedestrians and cyclists, and recommends strategies to target and improve roadway dangers. These include:

- Enhancing pedestrian safety through measures to improve visibility, protective buffers from cars, and speed reductions.
- Improve bicycle safety through research and implementation for policies, infrastructure investments, and partnerships with local, state, and federal organizations.

These measures emerged from identifying the causes of state-wide VRU fatalities and serious injuries and aim to address and reduce these roadway dangers.

# **B.** Mapping Tool Summary





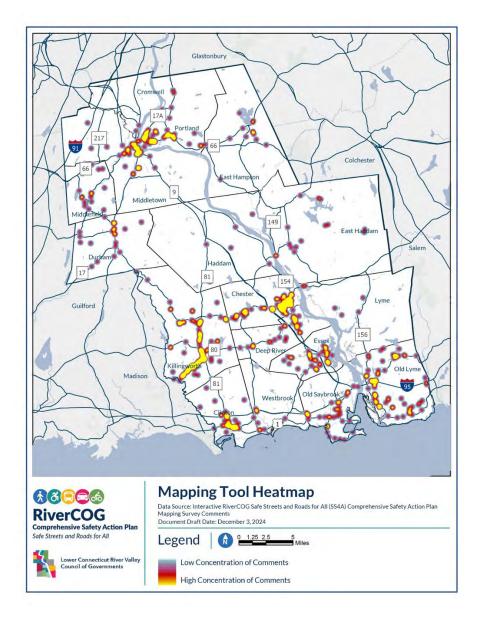
# Mapping Tool Analysis

December 2024



# **TABLE OF CONTENTS**

| oing Tool Analysis1          | Лар <sub>г</sub> |
|------------------------------|------------------|
| ping Tool ANALYSIS           | ИАрı             |
| erview3                      |                  |
|                              |                  |
| gion-Wide Takeaways <b>.</b> | Reg              |
| cal Takeaways5               | Loc              |
| Chester5                     |                  |
| Clinton5                     | (                |
| Cromwell5                    |                  |
| Deep River5                  | Ε                |
| Durham5                      | Ε                |
| East Haddam6                 | Е                |
| East Hampton6                |                  |
| Essex                        |                  |
| Haddam6                      |                  |
| Killingworth6                |                  |
| yme                          |                  |
| Middlefield                  |                  |
| Middletown                   |                  |
| 70                           |                  |
| Portland                     |                  |
| Westbrook                    |                  |




# **MAPPING TOOL ANALYSIS**

## **Overview**

The RiverCOG Comprehensive Safety Action Plan Safe Streets and Roads for All aims to eliminate roadway related deaths and serious injuries by developing a safe roadway system that serves all populations. To determine safety priorities by users of the roadway system, members of the public were invited to share safety concerns through an interactive mapping tool that was publicized at public meetings, at pop-ups in the community, on social media, and through e-mails to stakeholders. From August through November 2024, 631 comments were submitted.

Figure 1. Heatmap of Mapping Tool Comments





# Region-Wide Takeaways

Driver/car safety was the top concern shared by the public and accounted for 63% of all comments. Comments related to pedestrians, intersections, and visibility were also common, accounting for approximately one-third of all comments each.

High-level themes from the mapping tool are below:

- Dangerous driver behaviors such as speeding and disregard of stop signs are amplified by the natural topography (curves and vegetation creating poor sightlines)
- There is a strong desire for safe pedestrian and cyclist access, especially in urban areas (Portland and Middletown), shoreline communities (Old Saybrook, Old Lyme, Westbrook, and Clinton), rural areas with tourism attractions (Chester, East Haddam, and East Hampton), and throughout towns to commercial areas.
- Communities with vulnerable populations (areas with schools in Killingworth, Durham, Middletown, and Old Lyme) have significant concerns regarding driver behavior and improved pedestrian and cyclist safety.
- State roadways tended to attract comments at a higher rate than local roadways.

Frequent suggestions for improved safety include the following:

- Improved traffic signage
- Complete sidewalks and bike lanes, especially near schools, commercial areas, and the shoreline
- Improved sightlines

Table 1. Comments Categorized by Theme

| Theme             | Count | Percent of Total Comments |
|-------------------|-------|---------------------------|
| Driver/Car Safety | 396   | 63%                       |
| Pedestrian        | 240   | 38%                       |
| Intersection      | 197   | 31%                       |
| Visibility        | 186   | 29%                       |
| Bike              | 108   | 17%                       |
| Transit           | 62    | 10%                       |
| Schools           | 55    | 9%                        |
| Tourism           | 15    | 2%                        |



| Cut-through Traffic | 9   | 1% |
|---------------------|-----|----|
| Total               | 631 |    |

# **Local Takeaways**

Major takeaways broken out by town are shared in the sections below. Following these summaries, Table 2 and Table 3 outline the major themes by town and the key roadways of concern.

#### Chester

- There were concerns with speeding, drivers not stopping for pedestrians and cyclists, and delivery vehicles and parking on narrow streets in Chester Center (Route 148, Main Street, and Route 154).
- There was also concern with pedestrian access and safety, excessive speeding, and crashes near Cockaponset State Forest.

#### Clinton

- Respondents were concerned about speeding and desired better navigation (e.g., turning movements, pedestrian/cyclist access, and sightlines) for Route 81.
- Comments referred to a desire for pedestrian access (e.g., crosswalk installations and sidewalk extensions) and expressed difficulties with turning due to traffic on Route 1.

#### Cromwell

- There are concerns with speeding and turning on Route 99.
- There is support for a multiuse path near Route 9 connecting downtown Middletown with Main Street.

## Deep River

- Respondents desired traffic calming measures (due to excessive speeding) and pedestrian infrastructure along Route 154.
- Respondents were concerned about poor visibility and speeding on Route 80. They would also like to see safer pedestrian and cyclist infrastructure on Route 80.

#### **Durham**

• Route 17 is a major road of concern with excessive speeding and congestion. Many desire traffic calming measures (e.g., a rotary and support for turning movements). Throughout town, there is high



cut through traffic when Route 17 gets congested or seasonally (to get to the shoreline in the summer).

• Respondents noted poor sightlines and speeding on Route 147.

#### East Haddam

- Respondents expressed concern regarding speeding in areas with high pedestrian traffic and poor sightlines on Route 82.
- There were also safety concerns related to car traffic and bike access on East Haddam Colchester Turnpike and Hopyard Road.

# **East Hampton**

- Respondents were mainly concerned about speeding and desired better pedestrian infrastructure (i.e., sidewalks, crosswalks) on Route 66 and Smith Street due to their proximity to the popular destinations such as the Air Line Trail and Pumpkintown USA.
- Respondents are concerned about speeding and aggressive turning on Main Street. Improvements to pedestrian infrastructure and signals are desired for safer travel.

#### Essex

- Respondents desire improved pedestrian conditions including continuation or installation of sidewalks and more protection from aggressive driver behavior and cars (i.e., not following traffic signs and speeding) on Route 154, 153, and Westbrook Road.
- There is also a desire for a more comfortable biking environment and additional signage to help with navigation along Main Street.

#### Haddam

- There are concerns with speeding on Route 154, especially when it is near town centers.
- There are also general concerns regarding visibility (i.e., blind curves and sightlines) on rural roads.

# Killingworth

- Most comments were concentrated on Route 81 (particularly at Stevens Road), Route 80 (particularly at Roast Meat Hill Road), Green Hill Road, and Route 148. Top concerns included dangerous intersections, excessive speeding, poor sightlines, and desire for traffic calming measures especially in areas with vulnerable populations.
- On Route 80, respondents are concerned about speeding drivers and poor sightlines and desire a safer route for pedestrians and cyclists.



## Lyme

• There are concerns with speeding on Joshuatown Road and Route 148.

#### Middlefield

- Respondents are concerned about speeding and turning at intersections on Route 157.
- Respondents desire improved pedestrian safety through sidewalks and improved sightlines on Route 147.

#### Middletown

- There is a desire for better infrastructure for cyclists and sidewalk extensions and sidewalk maintenance for pedestrians on Route 66 and Route 9.
- On Main Street and Church Street, respondents report drivers ignoring traffic signs and speeding due to frequent backups.

## Old Lyme

- On Route 156, respondents desire improvements to signage (i.e., underpass height, stop signs) and safe pedestrian access with crosswalks.
- On Route 1 and Town Woods Road, respondents are concerned with excessive speeding on narrow roads and poor sightlines.
- At the intersection of Route 1 and Halls Road, respondents desire better infrastructure for students, especially by Lieutenant River Bridge, which is well used by students who bike and walk between school and the main commercial area.

## Old Saybrook

- There is a strong desire for safe pedestrian and cyclist access (i.e., safer intersections, crosswalks, sidewalks) on Route 154, Route 166, and Main Street.
- Respondents also desire crosswalks, sidewalks, and rotaries to curb speeding on Route 1.

## **Portland**

- Respondents desire safe bicycle access (dedicated bike lanes, unpredictable traffic related to commercial activities, connection to Air Line Trail), seek better pedestrian and cyclist access to the shopping plaza, and are concerned about dangerous driver behavior on Route 17.
- Respondents are concerned about dangerous driver behavior (i.e. speeding, drivers not following signs) and seek better pedestrian and cyclist access on Route 17A,

#### Westbrook



- Respondents desire complete crosswalks and additional time to facilitate pedestrian crossings on Route 1.
- Respondents also desire improvements for navigating turns, signals, and sightlines on Route 145 and I-95.



Table 2. Significant Themes by Town

| Significant<br>Themes  | Chester | Clinton | Cromwell | Deep<br>River | Durham | East<br>Haddam | East<br>Hampton | Essex | Haddam | Killing-<br>worth | Lyme | Middle-<br>field | Middle-<br>town | Old<br>Lyme | Old<br>Saybrook | Portland | West-<br>brook |
|------------------------|---------|---------|----------|---------------|--------|----------------|-----------------|-------|--------|-------------------|------|------------------|-----------------|-------------|-----------------|----------|----------------|
| Count of<br>Comments   | 88      | 43      | 2        | 30            | 21     | 15             | 15              | 37    | 6      | 138               | 6    | 15               | 41              | 73          | 36              | 56       | 9              |
| Bike                   | Х       | Х       | Χ        | Χ             |        |                | Χ               |       |        |                   |      |                  | Χ               | Х           | X               | Χ        |                |
| Pedestrian             | Χ       | X       | Χ        | Χ             |        |                | Χ               | Χ     |        | Х                 |      |                  | Χ               | X           | Χ               | Χ        | Х              |
| Driver<br>Behavior     | Х       | Х       | Х        | Х             | X      | X              | Χ               | Х     | X      | Х                 | Х    | Х                | X               | Х           | Х               | X        | Х              |
| Transit                |         |         |          |               |        |                |                 |       |        |                   |      |                  | Χ               |             |                 |          |                |
| Intersections          | Х       | X       | Χ        | Χ             | Χ      |                |                 |       |        |                   |      |                  | Χ               |             | Χ               | Χ        | Х              |
| Schools                |         |         |          |               | Х      |                |                 |       |        |                   |      |                  |                 | Χ           |                 |          |                |
| Visibility             |         | X       |          | Χ             | Х      | Χ              |                 |       | X      | Х                 |      | Х                |                 | X           |                 | Χ        | Х              |
| Tourism                | Χ       |         |          |               | Х      | Χ              | Χ               |       |        |                   |      |                  |                 |             |                 |          |                |
| Cut-through<br>Traffic |         |         |          |               | Х      |                |                 |       |        |                   |      |                  |                 |             |                 |          |                |



Table 3. Roadways of Concerns by Town

| Town         | Corridors of Concern (Top Corridors of Concern in Bold)     |
|--------------|-------------------------------------------------------------|
| Chester      | Route 148, Main Street, and Route 154                       |
| Clinton      | Route 1 and Route 81                                        |
| Cromwell     | Route 9 and Route 99                                        |
| Deep River   | Route 154 and Route 80                                      |
| Durham       | Route 17 and Route 147                                      |
| East Haddam  | Route 82, East Haddam Colchester Turnpike, and Hopyard Road |
| East Hampton | Route 66, Main Street, and Smith Street                     |
| Essex        | Route 154, Route 153, Main Street, and Westbrook Road       |
| Haddam       | Route 154                                                   |
| Killingworth | Route 81, Green Hill Road, Route 148, and Route 80          |
| Lyme         | Joshuatown Road and Route 148                               |
| Middlefield  | Route 157 and Route 147                                     |
| Middletown   | Main Street, Route 66, Church Street, and Route 9           |
| Old Lyme     | Route 156, Route 1, Halls Road, and Town Woods Road         |
| Old Saybrook | Route 1, Route 154, Route 166, and Main Street              |
| Portland     | Route 17 and Route 17A                                      |
| Westbrook    | Route 1, Route 145, and I-95                                |

# C. Policy & Process Recommendations Memorandum





Safe Streets and Roads for All

# **Policy And Process** Recommendations

**Technical Memorandum** 

# **TABLE OF CONTENTS**

| XUONG AS E Xa UÇGæea CÇUR R GS E Ac NIS æ | 1  |
|-------------------------------------------|----|
| XUOMOg a GF NOFT                          | 2  |
| Introduction                              |    |
| Statewide Policy & Process Review         | 2  |
| Regional Policy & Process Review          | 11 |
| Local Policy & Process Review             | 12 |
| a CÇUR R GS E Ac NIS æ                    | 15 |
| Project Development                       | 15 |
| Complete Streets                          | 16 |
| Vision Zero                               | 18 |
| Speed Management                          | 18 |
| Vulnerable Users & Transportation Need    | 20 |
| Education                                 | 21 |
| Data                                      | 23 |



# **POLICY REVIEW**

#### Introduction

The Policy and Process Memorandum reviews current transportation safety policies implemented in Connecticut, the Lower Connecticut River Valley (LCRV) Council of Governments (also known as RiverCOG), and local jurisdictions. For research purposes, transportation safety policy aims to:

- Promote safety among all road users
- Set standards of roadway design to promote vulnerable road users
- Achieve zero fatalities and zero serious injuries for all roadway users

This memorandum outlines current transportation safety policies and procedures and recommends new strategies based on best practices to reduce serious injuries and fatalities. First State, regional, and municipal policies are reviewed, according to the following topics:

- Project Development
- Complete Streets
- Vision Zero
- Speed Management
- Safe Driving
- Vulnerable Users
- Education
- Data & Monitoring

Policy recommendations are then outlined in table format with suggested agencies and timelines.

# **Statewide Policy & Process Review**

# **Project Development**

A number of CTDOT resources exist pertaining to funding, design, network planning, and safety, available in the <u>online portal</u>. Some resources are highlighted here and others are highlighted under the Complete Streets header.



#### Community Connectivity Grant Program

This program provides funding for local projects that focuses on enhancing the state's transportation network for all modes.

#### Road Safety Audit Program

The Road Safety Audit (RSA) program is run by CTDOT through the Community Connectivity Grant Program. The focus of the program is to make recommendations to improve pedestrian and bicycle safety in select areas. The RSA program is intended to serve as the first step toward project funding and initiation on study area recommendations through grants provided through the Community Connectivity Program. There have been a number of RSAs conducted in the Lower Connecticut River Valley (LCRV) region through this program, including Deep River, Chester, Haddam East Haddam, and Portland.

#### Local Transportation Capital Improvement Program (LOTCIP)

Connecticut Public Act 13-239 established the Local Transportation Capital Improvement Program (LOTCIP)in June 2013. The program provides State funds to municipalities through Council of Governments (COG's) for transportation projects of regional significance, including reconstruction, pavement rehabilitation, sidewalk, bridge, intersection improvement, and multi-use trail projects. Projects must meet the eligibility requirements of the Federal Surface Transportation Block Grant (STBG) program. Roadway improvements must be located on a roadway classified as collector or higher (rural minor collectors, rural local roads, and urban local roads are not eligible). Sidewalks and multi-use trails may be eligible regardless of roadway classification, as are projects primarily proposing bridge/culvert improvements that meet specific criteria. The program was initiated to streamline projects not requiring standard State/Federal design oversight and approval. Projects that require this oversight are better suited for other funding sources. For projects funded under the LOTCIP, all design activities necessary to advance the project to construction are the responsibility of the Municipality.

#### Transportation Rural Improvement Program (TRIP)

The CTDOT Transportation Rural Improvement Grant Program, (TRIP) provides state funds to municipal governments for infrastructure improvements in rural areas of Connecticut. Activities may include transportation capital projects such as construction, modernization, or major repair of infrastructure.



## **Complete Streets**

#### CTDOT Complete Streets Policy (2014)

The policy, adopted in 2014, establishes that the Connecticut Department of Transportation (CTDOT) will consider the needs of all users of all ages, abilities, and using all modes. Objectives and procedures to implement complete streets are identified, including alignment of transportation funding to encourage improvements benefitting non-motorized users, formation of a standing Complete Streets Committee, and several additional action items. The state's Complete Streets Committee includes representatives from across disciplines and representation from all CTDOT district offices. This committee's tasks include training among other ongoing items.

# CTDOT Complete Streets Controlling Design Criteria and Justification Process (2023)

In 2023, CTDOT implemented new Complete Streets design criteria to be incorporated into all projects. The Complete Streets 'nff 3° To2ff 2 is an expansion of CTDOT's Complete Street Policy, ensuring that every project includes a focus on pedestrian and bicyclist facilities and public transportation operations to create stronger intermodal transportation networks and improve safety.

#### CTDOT Quick Build Complete Streets Guidance

This program establishes a framework for municipalities seeking to implement demonstration projects on state roads, utilizing the CTDOT encroachment permit process, contingent upon adherence to CTDOT regulations and guidelines. Application process instructions as well as an overview of installation, evaluation, and feedback/ reporting are provided within the memo. It establishes that a CTDOT encroachment permit must be filed for such projects. This guidance streamlines the process for municipalities seeking coordination from CTDOT for complete streets quick build projects, especially since many candidate roadways for such projects are owned by the state.

#### Vision Zero

In 2021, the Connecticut General Assembly established a Vision Zero Council, an interagency working group tasked with developing statewide policy to eliminate transportation-related facilities



and severe injuries. The Council members commit to and prioritize a Safe System Approach. Recommendations of the Council were passed in HB5917. It includes the following:

- Empowering municipalities to deploy automated traffic enforcement with significant oversight from CTDOT
- Requires more robust safety education be provided to drivers
- Requires consideration of recommendations from equity stakeholders in the annual capital plan development process
- Requires continuation of a public awareness campaign on the dangers of impaired driving

This has also led to the re-establishment of the Safe Routes to Schools program at CTDOT which provides on-demand education, bike and pedestrian safety curriculum, and awards a Vision Zero Program Distinction For Schools annually.

#### Safe System Approach

The principles of the Safe System Approach are:

- Death and serious injuries are unacceptable.
- Humans make mistakes.
- Humans are vulnerable.
- Responsibility is shared.
- Safety is proactive.
- Redundancy is crucial.

The objectives of a Safe System Approach:

- Safer People Encourage safe, responsible

  driving and behavior by people who use our

  roads and create conditions that prioritize their ability to reach their destination unharmed.
- Safer Roads Design roadway environments to mitigate human mistakes and account for injury tolerances, encourage safer behaviors, and facilitate safe travel by the most vulnerable users.
- Safer Vehicles Expand the availability of vehicle systems and features that help to prevent crashes and minimize the impact of crashes on both occupants and non-occupants.
- Safer Speeds Promote safer speeds in all roadway environments through a combination of thoughtful, equitable, context-appropriate roadway design, appropriate speed-limit setting, targeted education, outreach campaigns, and enforcement.





Post-Crash Care – Enhance the survivability of crashes through expedient access to emergency
medical care, while creating a safe working environment for vital first responders and
preventing secondary crashes through robust traffic incident management practices.

## **Speed Management**

#### **Speed Limits**

The Office of the State Traffic Administration (OSTA) within CTDOT is responsible for approving speed limits on all public roadways in Connecticut. Local Traffic Authorities (LTAs) in towns, cities, and boroughs can establish, modify, and maintain speed limits on municipal roads within their jurisdiction.

- Engineering Study Requirement: When establishing or modifying speed limits, municipalities must conduct an engineering study. This study assesses factors such as road conditions, traffic volume, accident history, and the presence of pedestrians.
- Pedestrian Safety Zones: Municipalities can establish Pedestrian Safety Zones in downtown districts or community centers without OSTA approval. These zones are intended to enhance safety in areas with high pedestrian activity.
- School Zones: The standard speed limit in Connecticut school zones is 20 miles per hour. Fines for violating speed limits in school zones are double the fine for the same violation outside of a school zone.

#### **Automated Traffic Enforcement**

#### **Work Zones**

In 2023, CTDOT conducted a one-year pilot program to flag drivers going over the posted speed limits in highway work zones. Based on the success of the pilot program, lawmakers agreed to let the policy become permanent starting in 2025. The policy includes mandatory signs warning drivers of the location of cameras and supervision by the Department to ensure that fines are not disproportionately drawn from lower-income neighborhoods.

#### **Traffic Violation Monitoring Systems**

Connecticut now allows municipalities to ticket drivers whose vehicles are documented going 10 miles per hour faster than the posted speed limit or running a red light. The law requires that towns submit plans for CTDOT approval before they can begin using red light or speed cameras. Those plans must be renewed every three years, during which time towns must submit reports to the DOT and state lawmakers on the number of fines issued and revenue they collected. Once



municipalities receive permission to start installing cameras, they may operate them for up to three years before reapproval. In each location where cameras are installed, towns must issue only written warnings for the first 30 days before they can start fining violators \$50 on a first offense and up to \$75 for each subsequent offense, plus a \$15 processing fee. CTDOT's rules for speed monitoring plans include written justification for each location, including traffic patterns and history of crashes; a prohibition on placing more than two camera systems in census tracts with the highest concentration of poverty; and no more than one camera systems where census tracts smaller than a quarter mile.

# Safe Driving

#### Legal Framework

Impaired Driving: Connecticut Statute §14-227a prohibits a person from driving "while under the influence" of alcohol or drugs, or with an "elevated blood-alcohol content (BAC). The former is interpreted as his or her ability to drive is affected to an appreciable degree; the latter is interpreted, for drivers over 21, as a BAC level of 0.08. There are different BAC levels defined for drivers operating commercial vehicles and drivers under 21. All drivers convicted of DUIs face fines and prison terms. Moreover, penalties for first and second offenses include 45-day license suspension and ignition interlock device (more below). The law also provides for an education, intervention, or treatment program in exchange for dismissal of charges.

**Ignition Interlock**: In Connecticut, anyone caught for an alcohol-related driving offense is required to install an ignition interlock device if their BAC is 0.08 or higher.

Implied Consent Law: Statute §14-227b says that every person who operates a vehicle has consented to take a test to determine their blood-alcohol content, which can happen at any time.

Occupant Protection: A state law requiring all passengers in vehicles to wear their seatbelt went into effect in Fall 2021. The new legislation requires all backseat passengers to wear occupant protection, whereas the previous legislation only required for backseat passengers under 16.

**Seat Belt Laws**: Connecticut requires all drivers and passengers to wear seat belts, including in the back seat. The state participates in national campaigns like "Click It or Ticket" to increase seat belt usage and reduce unrestrained occupant injuries.



#### **Enforcement**

**DUI Grant:** A grant opportunity available to municipalities to engage in high-visibility DUI enforcement with a combination of extra DUI patrols and sobriety checkpoints. These are available for eligible dates based on National Highway Traffic Safety Administration (NHTSA) holiday mobilization campaigns and non-holiday expanded enforcement periods.

### **Vulnerable Users**

The Active Transportation Unit at CTDOT was created to advance pedestrian and bicycle planning initiatives. It collaborates on multimodal projects and administers education and grant programs promoting bicycle and pedestrian safety.

Under Title II of the Americans with Disabilities Act, all public entities with fifty or more full time employees must have an ADA Coordinator or similar to ensure the public entity meets Title II responsibilities. These include policies and processes for non-discrimination, accessibility for facilities and programs, and development of transition plans.

## **Active Transportation Microgrant Program**

The CTDOT in conjunction with Councils of Government in Connecticut has established this funding opportunity, the purpose of which is to provide organizations with funding for resources that advance safe, accessible, sustainable, and equitable walking, biking, and rolling in CT. Schools, school districts, municipalities, health districts, and 501©(3) nonprofits are eligible to apply and are limited to two grants in a 12-month period. Microgrants provide up to \$5,000 for each eligible applicant on a rolling basis. The intended uses are non-infrastructure such as bike helmets, bike locks, bike maintenance training and materials, League Certified Instructors training, programs and events supporting bicycle and pedestrian safety, and safety vests.

## **Planning Documents**

The state's Active Transportation Plan guides future improvements on state routes for a functional, equitable, and safety-focused active transportation network and recommend supportive programs and policies. An updated version is currently in development and is anticipated to be finalized in winter 2025.



## Legal Frameworks

Connecticut's **Vulnerable User Law** defines vulnerable users as pedestrians, bicyclists, highway workers, and others who use public ways without a motor vehicle. The law imposes fines on drivers who fail to exercise reasonable care and cause injury or death to a vulnerable user.

An Act Concerning Pedestrian Safety introduces new laws in Connecticut to protect pedestrians and bicyclists.

- Yielding to pedestrians at crosswalks: Drivers who fail to yield at a crosswalk when required are subject to a \$500 fine. When violations result in crashes and fatalities there can be more substantial penalties and potentially criminal charges
- Dooring: This law prohibits a person opening a car door or leaving a car door open longer than needed so that it makes contact with a pedestrian or bicyclist on a sidewalk, shoulder, or bikeway. Violations of this provision are considered infractions.

## Education

Safe Routes to School (SRTS), as established in 2005 and revised in November 2021 in accordance with the Federal Infrastructure Investment and Jobs Act (IIJA), is intended to enable and encourage children, including those with disabilities, to walk and bicycle to school; to make bicycling and walking to school a safer and more appealing transportation alternative, thereby encouraging a healthy and active lifestyle from an early age; and to facilitate the planning, development, and implementation of projects and activities that will improve safety and reduce traffic, fuel consumption, and air pollution in the vicinity of schools. The Connecticut SRTS Program is sponsored by CTDOT and the Federal Highway Administration with the goal of enabling and encouraging all children, in grades kindergarten-twelve (K-12) to walk and bicycle to school through community technical assistance and safety education. Schools/ school districts or municipalities can register for SRTS once they've identified a champion. A variety of tools are available including walk audit, development of an SRTS plan, skills clinics, and participation in Walk to School Day.

The Connecticut Training and Technical (T2) Assistance Center at UConn offers training in complete streets design, Road Safety Assessments, ADA Self-Assessment and Transition Planning, Solving ADA Design Challenges with a Complete Streets Mindset, Sign Installation and Maintenance, Low-Cost Safety Improvements, and Safe Transportation for Every Pedestrian (STEP). This training supports bicycle and pedestrian safety. As an example, the T2 Center also completed



a project where speed-feedback sign and speed management training was offered to all of Connecticut's 169 cities and towns at no cost to the local agency.

The CT Bicycle and Pedestrian Safety Outreach program has seen a 30% increase in annual spending since 2018 that includes the Watch for Me CT program, a bicycle and pedestrian safety outreach program funded by CTDOT. The state's commitment to bicycle and pedestrian safety has tripled from about \$560,000 in 2020 to \$1.6 million budgeted for 2024.

The CTDOT provides a grant for CT Children's Medical Center's Injury Prevention Center to fund the Watch for Me CT program. Watch for Me CT aims to increase the awareness of pedestrian and bicyclist safety issues and educate road users on the shared responsibility of staying safe on the roads.

The state also runs public awareness campaigns to reduce impaired driving, including the following:

- CTDOT National <u>Teen Driver Safety</u> Week
- CTDOT Real Lives campaign ("When Speeding Kills") for National Move Over Day
- CTDOT <u>Drive Sober or Get Pulled Over</u> campaign

## Data and Monitoring

Several initiatives are ongoing through the CTDOT T2 Center.

- The Connecticut Safety Circuit Rider Program provides safety related information, training, and technical assistance to agencies responsible for local roadway safety. Services include (but are not limited to) coordination of RSAs, equipment loan, collection, and analysis of traffic data, delivery of training, and assistance in the development of local road Safety Plans.
- Connecticut Transportation Safety Research Center (CTSRC) collects and links data from
  multiple sources to create a comprehensive database for crash analysis and injury prevention
  which is publicly accessible: Connecticut CRASH. The Connecticut Roadway Safety
  Management System (CRSMS), developed by CTSRC, implements Highway Safety Manual
  methods to analyze crash data including modules for network screening, diagnosis,
  countermeasure selection, economic appraisal, project prioritization, and safety effectiveness
  evaluation.



# **Regional Policy & Process Review**

# **Project Prioritization**

#### Metropolitan Transportation Plan

Metropolitan Transportation Plan (MTP) for the Lower Connecticut River Valley (LCRV) region defines the region's future transportation vision and outlines regional transportation funding priorities. The MTP also establishes goals, policies, and steps to help achieve that vision. All MPOs, must prepare a MTP with respect to the development of the metropolitan area's transportation network, which includes short- and long-term strategies and is updated every four years. The LCRV region consults with federal, state, and local agencies when developing the MTP and provides the public with a reasonable opportunity to comment on the plan.

#### Transportation Improvement Program (TIP)

The TIP is a list of federally funded transportation projects to maintain and enhance the transportation network of the region. All projects in the TIP are scheduled to receive funding within the next four fiscal years. The TIP includes a discussion of the TIP planning and development process, program descriptions, a financial plan, list of projects to be funded, and environmental justice review. The TIP also includes appendices that details projects by year, maps regional projects, performance-based planning and programming, Air Quality Conformity determination, comments, and certification.

## **Complete Streets**

## Lower Connecticut River Valley Bicycle and Pedestrian Master Plan (2022)

This plan provides information on existing conditions, opportunities, and challenges related to bicycle and pedestrian projects. It also provides a vision and goals, design guidelines, and "recommendations for implementing multi-modal improvements that will ensure a safe and efficient transportation network that enhances quality of life and economic vitality." The documentation included an overview of accomplishments, issues and concerns, and opportunities for each municipality in the region.



# **Local Policy & Process Review**

# **Project Development**

The town ordinances and subdivision regulations of several municipalities have identified guidance on the placement of pedestrian and bicycle infrastructure, as highlighted below.

- Deep River, Clinton, Chester have ordinances allowing the municipality to require bikeways to be developed.
- Several towns have basic design guidelines for sidewalks and may establish criteria for
  easement requirements in order to build and maintain a sidewalk network (Killingworth, Old
  Saybrook, Old Lyme, Durham, East Hampton, Deep River, Durham).
- Old Saybrook also provides requirements for developments near transit stations to have shelters for convenient and safe user for transit riders. East Hampton also requires bus shelters in specific zones. In Clinton's Transit Oriented Development Overlays, transit access, pedestrian convenience, and shared parking is encouraged in redevelopment of large properties to allow for a wide variety of transportation options.
- Some municipalities have requirements for sidewalks at all new developments as well as (in some cases) substantial changes to existing developments.
- Westbrook, Old Saybrook, Essex, East Hampton, Clinton, Chester, Killingworth, and Old Lyme
  promote the development of a connected sidewalk network through requirements for
  sidewalks on specific roadway classifications, districts, roads identified through planning
  studies, or using other distinctions like destinations, schools, or generally areas with high
  pedestrian activity expected.
- Some municipalities require bike parking in specific locations, including new developments, transit transfer stations, and park and ride lots.

# **Complete Streets**

- Middletown (2012), Portland (2016), and Middlefield (2023) have adopted Complete Streets Policies.
- The Town of Durham created a Complete Streets Committee in 2023 to engage the community in advancing the creation of a network that suits users of all modes in the Town.



Middletown has a Complete Streets Committee which works to enact the Complete Streets Plan (adopted in 2013).

- The Town of Westbrook Planning Commission adopted the Sidewalk/Pedestrian Plan in 2019 to assess the existing sidewalk system and close gaps and enhance the overall sidewalk system.
- Middletown has also developed a Traffic Calming Program to lower vehicle speeds, improve pedestrian safety, and reduce traffic diversions in residential neighborhoods.

# **Speed Management**

#### **Speed Limits**

In Haddam, Middletown, and Portland, speed limits of 25 or 30 miles per hour have been established on roadways. Speed limits of 15 miles per hour have been established within distances of 500 feet of any schools in Haddam and Middletown.

#### **Automated Traffic Enforcement**

Middletown is installing traffic cameras in high-risk areas in 2025, including in areas with congestion and in school and pedestrian zones. These cameras fine vehicles exceeding speed limits by at least 10 miles per hour.

## **Vulnerable Users**

In Cromwell, motorized scooters and pocket motorcycles are prohibited on public streets to ensure street safety of other transportation modes.

Old Lyme prohibits the use of motor buses and bus-type campers on select municipal streets to promote safe access for other modes of transportation.

## Education

Safe Routes to School: Portland participates in the Safe Routes to School program, which aims to improve the safety of children walking and biking to school through infrastructure improvements and educational initiatives. Education events have occurred at schools in Haddam, East Haddam, and Hamden.



Portland's Complete Streets Committee launched a Pace Car Program in 2022 where drivers pledge to drive safely, courteously, and within speed limits. The campaign brought awareness on the risks involved with speeding and distracted driving.



# **RECOMMENDATIONS**

The policy recommendations are informed by potential gaps and best practice review, which are outlined below. Lead agencies, relevant safe system approach elements, and timelines are identified.

# **Project Development**

|                                                                           |                       |                | Safe System   |          |
|---------------------------------------------------------------------------|-----------------------|----------------|---------------|----------|
|                                                                           |                       | Partner        | Approach      |          |
|                                                                           | Lead Agency           | Agency         | Element       | Timeline |
| In collaboration with CTDOT, integrate complete streets planning into     | <b>Municipalities</b> | CTDOT,         | Safer Speeds, | Ongoing  |
| the routine preservation cycle, intersection upgrades, Vendor in Place    |                       | RiverCOG       | Safer Roads   |          |
| projects, and Reconstruction projects                                     |                       |                |               |          |
| Adopt the Safe Transportation for Every Pedestrian approach, which        | Municipalities        | RiverCOG       | Safer Roads   | 1-2      |
| provides a structured approach to making streets safer for pedestrians,   |                       |                |               | years    |
| and in turn supports broader goals related to safety, sustainability, and |                       |                |               |          |
| community development.                                                    |                       |                |               |          |
| Create and share educational materials for quick-build demonstrations     | RiverCOG              | Municipalities | Safer Roads   | 1 year   |
| (such as CRCOG's Tactical Urbanism Guide) to local member                 |                       |                |               |          |
| municipalities.                                                           |                       |                |               |          |
| Prioritize safety-based projects within transportation planning programs  | RiverCOG              | CTDOT          | Safer Roads   | 1-5      |
| and documents                                                             |                       |                |               | years    |



# **Design Standards**

Street design standards provide a systematic approach to developing safe, efficient, and welcoming streets for all users. Strong guidance can be developed and implemented with close engagement with community members and strong partners to lead and produce changes.

|                                                                      |                |                | Safe System        |          |
|----------------------------------------------------------------------|----------------|----------------|--------------------|----------|
|                                                                      |                | Partner        | Approach           |          |
|                                                                      | Lead Agency    | Agency         | Element            | Timeline |
| Incorporate complete streets strategies into design standards,       | Municipalities | RiverCOG       | Safer Roads, Safer | Ongoing  |
| ensuring that roads are designed to accommodate all users.           |                |                | Speeds             |          |
| Pursue funding to support updating municipal street design standards | RiverCOG       | Municipalities | Safer Roads, Safer | 1-3      |
| with sensitivity to land use and community context, in collaboration |                |                | Speeds             | years    |
| with communities                                                     |                |                |                    |          |

# **Complete Streets**

Complete streets frameworks are tailored by communities' unique processes and evaluate the street design components to augment quality of life, reduce roadway related fatalities and injuries, and create a welcoming and convenient environment for all. Partnerships and coordination among government agencies, community organizations, and community members are required to establish a system that effectively meets the needs of road users.



|                                                                        |                |                | Safe System   |          |
|------------------------------------------------------------------------|----------------|----------------|---------------|----------|
|                                                                        |                | Partner        | Approach      |          |
|                                                                        | Lead Agency    | Agency         | Element       | Timeline |
| Develop complete streets policies that reflect community needs,        | RiverCOG       | Municipalities | Safer Speeds, | 1-3      |
| prioritize the safety of vulnerable road users, and are actionable     |                |                | Safer Roads   | years    |
| through strong partnerships with stakeholders.                         |                |                |               |          |
| Create a member agency working group to ensure complete streets        | RiverCOG       | Municipalities | Safer Roads   | 1-2      |
| policies are consistent with transportation plans.                     |                |                |               | years    |
| Regularly assess street safety through audits and evaluations to       | Municipalities | RiverCOG       | Safer Roads   | 1-3      |
| identify potential hazards and address safety gaps for all road users. |                |                |               | years    |



# **Vision Zero**

Vision Zero action plans allow communities to use a holistic framework to recognize that traffic deaths are preventable. Action plans, however, are the start of an on-going process of infrastructure improvements and data monitoring.

|                                                                                                                     |                | Partner  | Safe System      |          |
|---------------------------------------------------------------------------------------------------------------------|----------------|----------|------------------|----------|
|                                                                                                                     | Lead Agency    | Agency   | Approach Element | Timeline |
| Develop and adopt Vision Zero Policies to help build consensus and make municipalities more competitive for grants. | Municipalities | RiverCOG | Safer Roads      | 1 year   |
| Prioritize infrastructure improvements at locations that see the highest number of severe and fatal crashes.        | Municipalities | RiverCOG | Safer Roads      | 5 years  |

# **Speed Management**

Speed limits reflect the use-type of roadways and must be limited to lower the risk and severity of crashes. Factors such as intersections with other roadways, traffic volumes, road environment, and presence of vulnerable users can impact how speed limits are set. Generally, speed limits can play a valuable role in curbing dangerous human behaviors, reducing friction with other transportation modes, and creating a predictable road environment. The Office of State Traffic Administration allows municipalities to reduce speed limits below 25 miles per hour in pedestrian safety zones or where an engineering study recommends this change. Speed violation monitoring systems can help manage driver behavior through automated speed detection and enforcement. Speed monitoring displays provide real-time feedback to drivers and create immediate opportunities for driver reflection and behavior correction. The display heightens awareness, which can help prevent roadway crashes, encourage safe driving, and reduce speeding.



|                                                                   |                |                 | Safe System         |           |
|-------------------------------------------------------------------|----------------|-----------------|---------------------|-----------|
|                                                                   | Lead Agency    | Partner Agency  | Approach<br>Element | Timeline  |
| Callabarata with the Chata to include work many appeal actatus    |                |                 |                     |           |
| Collaborate with the State to include work zone speed safety      | RiverCOG       | Municipalities, | Safer Roads         | Ongoing/  |
| cameras at priority locations within the RiverCOG region          |                | CTDOT           |                     | 1-3 years |
| Adopt policies formalizing the use of target speed as the design  | Municipalities | RiverCOG        | Safer Speeds,       | 1 year    |
| approach for municipal projects                                   |                |                 | Safer Roads         |           |
| Pursue speed limit reductions in locations with high pedestrian   | CTDOT          | RiverCOG,       | Safer Speeds        | 1-2 years |
| and bicycle volumes and on locations on the High Injury           |                | Municipalities  |                     |           |
| Network.                                                          |                |                 |                     |           |
| Establish speed violation monitoring systems to ensure            | Municipalities | CTDOT,          | Safer Speeds        | 1-2 years |
| compliance with road safety laws and data collection for          |                | RiverCOG        |                     |           |
| identification of road safety improvements.                       |                |                 |                     |           |
| Pursue funding and municipal legislative approval in support of   | Municipalities | CTDOT,          | Safer Speeds        | 1-2 years |
| automated traffic enforcement                                     |                | RiverCOG        |                     |           |
| Expand the use of automated traffic enforcement at top crash      | Municipalities | CTDOT,          | Safer Speeds        | 1-2 years |
| locations on the High Injury Network, especially if they are near |                | RiverCOG        |                     |           |
| school zones or locations frequented by pedestrians and           |                |                 |                     |           |
| cyclists.                                                         |                |                 |                     |           |



|                                                                   |                |                | Safe System  |           |
|-------------------------------------------------------------------|----------------|----------------|--------------|-----------|
|                                                                   |                |                | Approach     |           |
|                                                                   | Lead Agency    | Partner Agency | Element      | Timeline  |
| Install speed monitoring displays in neighborhoods with high      | CTDOT,         | RiverCOG       | Safer Speeds | 1-2 years |
| pedestrian traffic or in school zones, to correct driver behavior | municipalities |                |              |           |
| in real-time.                                                     |                |                |              |           |
| Enforce lower motor vehicle speeds, especially in school zones.   | Municipalities | RiverCOG       | Safer Speeds | 1-2 years |

# **Vulnerable Users & Transportation Need**

The state's State Highway Safety Plan (SHSP) recommends continuation of public awareness of vulnerable user safety issues (including Work Zone Safety), increased accessibility of education, establishing vulnerable road user safety and enforcement training to police officers, and conducting community engagement training for outreach with vulnerable road users. Moreover, best practices and SS4A guidance suggest prioritizing projects in areas of high transportation need. Work Zone Safety refers to the strategies and measures implemented to protect workers, drivers, and pedestrians within road construction and maintenance areas. Work zone safety includes the use of appropriate signage, barriers, traffic control devices, and speed reductions to mitigate risks associated with construction zones.



|                                                             |                |                 | Safe System  |           |
|-------------------------------------------------------------|----------------|-----------------|--------------|-----------|
|                                                             |                |                 | Approach     |           |
|                                                             | Lead Agency    | Partner Agency  | Element      | Timeline  |
| Increase promotion of vulnerable user safety through        | RiverCOG,      | Municipalities, | Safer People | 1 year    |
| public campaigns, community outreach, and additional        | CTDOT          |                 |              |           |
| safety training.                                            |                |                 |              |           |
| Prioritize protected infrastructure on critical gaps in the | RiverCOG,      | Municipalities, | Safer Roads  | 1-5 years |
| bicycle and pedestrian networks.                            | CTDOT          |                 |              |           |
| Evaluate lighting and street conditions for safety          | Municipalities |                 | Safer Roads  | 1-3 years |
| improvements.                                               |                |                 |              |           |
| Evaluate how project prioritization processes can           | RiverCOG,      | Municipalities, | Safer Roads  | 1 year    |
| incorporate transportation need as a factor.                | CTDOT          | Tompkins County |              |           |
| Employ proper training and use of safety protocols for      | CTDOT,         | RiverCOG        | Safer People | 6-9       |
| workers.                                                    | municipalities |                 |              | months    |

# **Education**

Education can be a powerful tool in shifting driver behavior and attitudes to enhance road safety.



|                                                                                                                                                                                                         |          |                | Safe System  |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------------|-----------|
|                                                                                                                                                                                                         | Lead     |                | Approach     |           |
|                                                                                                                                                                                                         | Agency   | Partner Agency | Element      | Timeline  |
| Increase education campaigns to promote safe road behavior and                                                                                                                                          | CTDOT,   | RiverCOG,      | Safer People | 1 year/   |
| help the public understand risks and consequences of dangerous road behavior.                                                                                                                           | RiverCOG | municipalities |              | ongoing   |
| Create and sustain a public website that provides information, resources, training, and educational opportunities.                                                                                      | RiverCOG | Municipalities | Safer People | 1 year    |
| Collaborate with the State's Vision Zero Council and the Connecticut Department of Motor Vehicles (DMV) on incorporating Vision Zero concepts into their new driver manual and license renewal mailings | RiverCOG | CTDOT          | Safer People | 1-5 years |

# Safe Routes to School

Safe Routes to School aims to provide safer and more comfortable ways for children to walk or bike to school. These programs feature engagement with local communities, parents, and school leadership to develop strategies for robust, consistent, and effective implementation. The CTDOT program, funded through 2026, is focused on non-infrastructure, particularly incentives, education and curriculum initiatives, which are free upon application. There is also a component dedicated for school specific walk audits and townwide SRTS action plans. Municipalities should take advantage of all three opportunities.



|                                                              |                           |         | Safe System  |          |
|--------------------------------------------------------------|---------------------------|---------|--------------|----------|
|                                                              |                           | Partner | Approach     |          |
|                                                              | Lead Agency               | Agency  | Element      | Timeline |
| Contact CTDOT for access to free bike and pedestrian         | Municipalities, School    | CTDOT   | Safer People | 1 year   |
| incentives and education curriculum to enhance safety        | Districts, and or Schools |         |              |          |
| access for children.                                         |                           |         |              |          |
| Contact CTDOT to pursue walk audits at local schools (1 mile | Municipalities, School    | CTDOT   | Safer People | 1 year   |
| or less corridors on state highways)                         | Districts, and/or schools |         |              |          |
| Contact CTDOT to pursue town-wide action plans in            | Municipalities, school    | CTDOT   | Safer People | 1 year   |
| partnership with schools, local transportation agencies, and | districts, and or schools |         |              |          |
| community stakeholders.                                      |                           |         |              |          |

# **Data**

The <u>Connecticut Strategic Highway Safety Plan (SHSP) (2022-2026)</u> recommends expansion of data collection on all public roads, which can include: pedestrian and bicycle count data and collection of data to assess secondary crash rates. Additional best practice recommendations include collaboration for vulnerable road user data collection strategies and continuation of Connecticut Crash Repository training for CTDOT staff, local municipalities, and RiverCOG.



| Lead<br>Agency | Partner Agency  | Approach<br>Element                             | Timeline                                                                |
|----------------|-----------------|-------------------------------------------------|-------------------------------------------------------------------------|
|                |                 | Element                                         | Timeline                                                                |
| TDOT           |                 |                                                 |                                                                         |
|                | Municipalities, | Safer Roads                                     | Ongoing                                                                 |
|                | RiverCOG        |                                                 |                                                                         |
| iverCOG        | Municipalities  | Safer Roads                                     | 1 year                                                                  |
|                |                 |                                                 |                                                                         |
|                |                 |                                                 |                                                                         |
| TDOT           | RiverCOG,       | Safer Roads                                     | Ongoing                                                                 |
|                | municipalities  |                                                 |                                                                         |
| i\             |                 | RiverCOG  werCOG Municipalities  TDOT RiverCOG, | RiverCOG  WerCOG Municipalities Safer Roads  TDOT RiverCOG, Safer Roads |

# D. Focus Corridor Selection Memorandum





# Focus Corridor Selection Overview

April 10, 2025

# **TABLE OF CONTENTS**

| FOCUS CORRIDOR SELECTION OVERVIEW               | 1    |
|-------------------------------------------------|------|
| FOCUS CORRIDOR SELECTION                        | 2    |
| Overview                                        | 2    |
| Methodology                                     | 2    |
| Consolidation of Data                           | 2    |
| Determination of Focus Corridors                | 4    |
| Municipal Review and Corridors of Concern       | 7    |
| Next Steps                                      | 9    |
| APPENDIX 1. DATA-LINKED SEGMENTS & DATA SOURCES | 5 10 |
| Data Sources                                    | 12   |



# **FOCUS CORRIDOR SELECTION**

## **Overview**

For RiverCOG's Comprehensive Safety Action Plan, the project team prioritized roadway segments for safety improvements based on a methodology using crash history, public input, and data pertaining to transportation need and access. The highest scoring regional locations, known as "focus corridors," are identified in this document. This document also outlines the corridors of concern for each municipality, known as "corridors of concern."

# Methodology

In accordance with the Safe Streets and Roads for All (SS4A) guidance, focus corridors should indicate where safety inventions will have the most significant impact in reducing fatal and serious injury crashes (KA crashes). Additionally, the scoring methodology considers other factors such as community priorities and transportation access and need. This methodology aims to identify corridors of concern that focus limited funding resources on where they can most effectively reduce crash risks and enhance safety for all users.

The scoring system used the following data sources:

- High Injury Network<sup>1</sup>
- Vulnerable road user (VRU) KA crashes<sup>1</sup>
- Critical Crash Rate (CCR) locations<sup>1</sup>
- Transportation need and access (demographic and economic indicators)
- Public and stakeholder feedback

## Consolidation of Data

Local and state roadway segments within the study area were mapped as a basis to calculate the opportunities for safety improvements in each segment. Limited access highways (i.e., Route 9 and interstates) were excluded. State roadways were split up by town to keep segment lengths consistent. In addition, critical crash rate locations, VRU KA crashes, High Injury Network, and public feedback were mapped along roadway segments within the study area.

From here, the number of public comments that fell within 75 feet of roadway segments were assigned a weight and point value based on these quantities (see Table 1). Roadway segments were

<sup>&</sup>lt;sup>1</sup> See the Base Mapping & Safety Analysis memorandum.



assigned binary values based on the presence of critical crash rate locations, VRU KA crashes, and the High Injury Network. Finally, points were awarded to roadway segments with demonstrated transportation access and need, which is determined by the presence of any of the following: CT DEEP and Justice40 defined environmental justice communities, public schools, Opportunity Zones<sup>2</sup>, internally-identified vulnerable communities, and areas with high marital and fertility rates. This produced a score for each location.

Table 1. Indicators, Weights, and Point Values for Segments

| Indicator                                     | Weight | Point Values                                                                                             |
|-----------------------------------------------|--------|----------------------------------------------------------------------------------------------------------|
| Critical Crash Rate (CCR)                     | 15     | O points: Not a CCR location (segment or intersection)                                                   |
| locations                                     |        | 15 points: CCR location (segment or intersection)                                                        |
| Vulnerable Road User                          | 20     | 0 points: 0 VRU KA crashes                                                                               |
| (VRU) Fatal or Serious<br>Injury (KA) Crashes |        | 20 points: 1+ VRU KA crashes                                                                             |
| High Injury Network<br>(HIN)                  | 35     | O points: A roadway segment is not on the High-Injury<br>Network                                         |
|                                               |        | 35 points: A roadway segment is on the High-Injury<br>Network                                            |
| Perception                                    | 15     | 0 points: 0 comments                                                                                     |
|                                               |        | 1 - 10 points: Count of comments up to 5 comments in a 1-to-2 ratio                                      |
|                                               |        | 15 points: 6* or more comments                                                                           |
|                                               |        | *6 is the 90 <sup>th</sup> percentile of all comments.                                                   |
|                                               |        |                                                                                                          |
| Access & Transportation<br>Need               | 15     | Relative transportation need will be determined quantitatively, drawn from various categories including: |
|                                               |        | • CTDEEP                                                                                                 |
|                                               |        | • Justice40                                                                                              |

<sup>&</sup>lt;sup>2</sup> <u>U.S. Department of Housing and Urban Development: Opportunity Zones (2025)</u>



| <ul> <li>Presence of schools</li> <li>Internal analysis (including income, access to vehicle, marriage/birth rates, opportunity zones)</li> </ul> |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| If a segment has criteria that meets 1 or more categories, it will be awarded points based on the following increments:                           |
| O points: O categories                                                                                                                            |
| 5 points: 1 category                                                                                                                              |
| 10 points: 2-3 categories                                                                                                                         |
| 15 points: 4+ categories                                                                                                                          |

The top twenty roadway segments were chosen as the priority locations based on scoring results. The initial results of this step of the analysis are available in Appendix 1.

# **Determination of Focus Corridors**

The project team processed the selected data-linked segments into roadway corridors of approximately 0.5 miles in length. These locations were determined through matching the corresponding location-based factor cross streets (i.e. incorporation of High Injury Network, CCR, or VRU KA Crash locations, or public comments). For any corridors where multiple crash locations were identified but not within a half mile of each other, safety analysis derived points were disaggregated by location. Once these locations were identified, the prioritization exercise was repeated for the final ranking of focus corridors.

Figure 1 shows a map of the final 24 focus corridors, and Table 2 provides the ranking. Note that nearly all the regional focus corridors are State roadways.



Figure 1. Focus Corridors

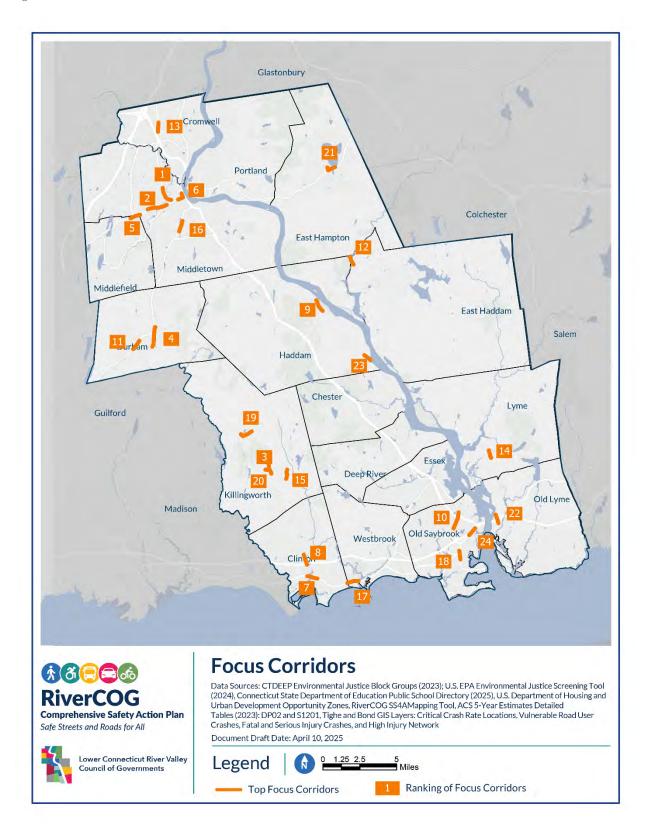





Table 2. Focus Corridors Ranking

| Rank | Route<br>Number<br>/Name | Cross Streets                   | Length (mi) | Municipality                | Score<br>(Out of<br>100) | HIN | CCR<br>Location | VRU<br>KA<br>Crash |
|------|--------------------------|---------------------------------|-------------|-----------------------------|--------------------------|-----|-----------------|--------------------|
| 1    | 3                        | Liberty St/<br>Stoneycrest Dr   | 0.83        | Middletown                  | 91                       | Х   | Х               | Х                  |
| 2    | 66                       | Camp St/ Butternut<br>St        | 1.02        | Middletown                  | 71                       | Х   |                 | Х                  |
| 3    | 81                       | Hemlock Dr/<br>Chittenden Rd    | 0.54        | Killingworth                | 60                       | Х   |                 |                    |
| 4    | 77                       | Higganum<br>Rd/Dionigi Dr       | 1.06        | Durham                      | 56                       | Χ   | х               |                    |
| 5    | 66                       | Peters Lane/<br>Woodgate        | 0.53        | Middlefield/<br>Middletown* | 55                       | Χ   |                 | Х                  |
| 6    | 66                       | Rappallo Ave/ High<br>St        | 0.49        | Middletown                  | 54                       |     | х               | Х                  |
| 7    | 1                        | Hull Street/ Liberty<br>St      | 0.53        | Clinton                     | 45                       |     |                 | Х                  |
| 8    | 81                       | Walnut Hill Rd/ N<br>High St    | 0.54        | Clinton                     | 40                       |     | х               |                    |
| 9    | 154                      | Jail Hill Rd/ Island<br>Dock Rd | 0.65        | Haddam                      | 37                       | Х   |                 |                    |
| 10   | 154                      | Bokum Rd/ Essex<br>Rd           | 0.88        | Old Saybrook                | 35                       |     | х               | Х                  |
| 11   | 17                       | Dinatale Dr/ Saw<br>Mill Rd     | 0.53        | Durham                      | 35                       | Х   |                 |                    |
| 12   | 151                      | Powerhouse Rd/<br>Moodus Rd     | 0.46        | Haddam/ East<br>Haddam*     | 35                       | Х   |                 |                    |
| 13   | 3                        | Evergreen Rd/<br>Sanford Ln     | 0.48        | Cromwell                    | 35                       | Х   |                 |                    |
| 14   | 156                      | Keeny Rd/ Bill Hill<br>Rd       | 0.41        | Lyme                        | 35                       | Х   |                 |                    |
| 15   | Roast<br>Meat Hill<br>Rd | Iron Works Rd/<br>Reservoir Rd  | 0.49        | Killingworth                | 35                       |     | х               |                    |
| 16   | 17                       | Highland Ave/ Farm<br>Hill Rd   | 0.57        | Middletown                  | 32                       |     | Х               |                    |



| 17 | 1               | Indian Trail/ Pine<br>Cone Dr           | 0.59                      | Westbrook/<br>Clinton* | 31         |  |   | х |
|----|-----------------|-----------------------------------------|---------------------------|------------------------|------------|--|---|---|
| 18 | 154             | Sheffield St/ Route<br>1                | oute 0.45 Old Saybrook 29 |                        | Х          |  |   |   |
| 19 | 148             | Birch Mill Rd/ Birch<br>Mill Rd         | 0.66                      | Killingworth           | ngworth 29 |  | Х |   |
| 20 | 80              | Route 81/ Old<br>Deep River<br>Turnpike | 0.33                      | Killingworth           | 27         |  | Х |   |
| 21 | 66/N<br>Main St | Markham Ln/ Hills<br>Ave                | 0.55                      | East Hampton           | 27         |  |   | Х |
| 22 | 156             | Huntley Rd/ Gould<br>Ln                 | 0.46                      | Old Lyme               | 20         |  | Х |   |
| 23 | 154             | Route 82/ Dudley<br>Clark Rd            | 0.42                      | Haddam                 | 17         |  | Х |   |
| 24 | 1               | Ferry Rd/ Mulcahny<br>Rd                | 0.47                      | Old Saybrook           | 17         |  | Х |   |

<sup>\*</sup>While segments were primarily divided by municipality, certain focus corridors were extended to two municipalities to account for factors (i.e., VRU KA crashes, CCR locations) that influence safety within close proximity to original segments.

# **Municipal Review and Corridors of Concern**

Not all municipalities in the region have a regional focus corridor; however, there are safety needs in every municipality. The project team will be developing municipal profiles, which will document the roadways that exhibited the greatest need for safety improvements, regardless of if they are a regional focus corridor.

The results of the prioritized data-linked segment analysis were used as the basis for developing a list of "corridors of concern." In addition, any locations with VRU KA crashes and CCR locations not identified within the focus corridors are included in this list.

Table 3. Corridors of Concern by Municipality

| Municipality | Top Corridors of Concern |
|--------------|--------------------------|
| Chester      | Route 148                |
|              | Route 154                |
|              | Main Street              |
|              | Straits Road             |



|              | North Main Street                                                 |
|--------------|-------------------------------------------------------------------|
| Clinton      | Route 1<br>Route 81<br>Walnut Hill Road                           |
| Cromwell     | Route 3 Route 99 Route 372                                        |
| Deep River   | Route 80<br>Route 145<br>Route 154                                |
| Durham       | Route 17 Route 77 Route 79 Route 68 Maple Avenue                  |
| East Haddam  | Route 151<br>Route 434<br>Route 82                                |
| East Hampton | Route 66<br>North Main Street<br>Main Street No 2<br>Hills Avenue |
| Essex        | Route 154<br>Route 153                                            |
| Haddam       | Route 154<br>Route 151<br>Route 81                                |
| Killingworth | Route 81<br>Route 148<br>Route 80<br>Roast Meat Hill Road         |
| Lyme         | Route 156<br>Route 148                                            |
| Middlefield  | Route 66<br>Lake Road<br>Harvest Wood Road                        |
| Middletown   | Route 66 Route 3 Route 17 Saybrook Road Silver Street             |



|              | East Main Street Maple Street               |
|--------------|---------------------------------------------|
|              | Oak Street Warwick Street                   |
|              | Route 155                                   |
|              | Highland Avenue Westlake Drive              |
|              | Route 154                                   |
|              | Country Club Road                           |
|              | Old Farms West                              |
| Old Lyme     | Route 156 Route 1 Four Mile River Road      |
| Old Saybrook | Route 154 Route 1 Bokum Road                |
| Portland     | Route 17<br>Route 66                        |
| Westbrook    | Route 1<br>Route 166<br>Linden Avenue South |

# **Next Steps**

The initial list of corridors of concern and geographic extents will be further refined with stakeholders as well as cross-checked against active and programmed planning and design initiatives (such as Middletown's active SS4A contract). Ten focus corridors will be included in site investigations, and three of these will be the subject of planning-level concepts with suggested safety improvements.



# APPENDIX 1. DATA-LINKED SEGMENTS & DATA SOURCES



Table 1. List of Prioritized Data-Linked Segments

| Rank | Route<br>Number/<br>Name | Municipality | Score<br>(Out of<br>100) | HIN | CCR<br>Location | VRU<br>KA<br>Crash |
|------|--------------------------|--------------|--------------------------|-----|-----------------|--------------------|
| 1    | 66                       | Middletown   | 95                       | Х   | Х               | Х                  |
| 2    | 3                        | Middletown   | 91                       | Х   | Х               | Х                  |
| 3    | 81                       | Killingworth | 60                       | Х   |                 |                    |
| 4    | 154                      | Haddam       | 59                       | Х   | х               |                    |
| 5    | 66                       | Middlefield  | 57                       | Х   |                 | Х                  |
| 6    | 17                       | Middletown   | 56                       |     | х               | Х                  |
| 7    | 154                      | Old Saybrook | 55                       |     | х               | Х                  |
| 8    | 17                       | Durham       | 55                       | Х   |                 |                    |
| 9    | 151                      | East Haddam  | 49                       | Х   |                 |                    |
| 10   | 1                        | Clinton      | 45                       |     |                 | Х                  |
| 11   | 156                      | Old Lyme     | 45                       |     |                 | Х                  |
| 12   | 3                        | Cromwell     | 45                       | Х   |                 |                    |
| 13   | 1                        | Old Saybrook | 40                       |     | ×               |                    |
| 14   | 1                        | Westbrook    | 40                       |     |                 | Х                  |
| 15   | 148                      | Killingworth | 40                       |     | Х               |                    |
| 16   | 156                      | Lyme         | 40                       | Х   |                 |                    |
| 17   | 80                       | Killingworth | 40                       |     | X               |                    |
| 18   | 81                       | Clinton      | 40                       |     | Х               |                    |
| 19   | Roast<br>Meat Hill<br>Rd | Killingworth | 40                       |     | Х               |                    |
| 20   | 66                       | East Hampton | 38                       |     |                 | Х                  |

Note: Middletown has already received an SS4A grant to design safety improvements for Route 66 and Route 3.



## **Data Sources**

- Critical Crash Rate Locations: Tighe and Bond GIS Layer
- Vulnerable Road User Crashes: Tighe and Bond GIS Layer
- Fatal and Serious Injury Crashes: Tighe and Bond GIS Layer
- High Injury Network: Tighe and Bond GIS Layer
- Perception/public comments: RiverCOG SS4A Mapping Tool
- CTDEEP Environmental Justice Communities: <u>CTDEEP</u>
- Justice40 Communities: <u>Justice40</u>
- CT Public Schools: <u>Education Directory (2025) from Connecticut State Department of</u> Education (CSDE)
- Opportunity Zones: <u>U.S. Department of Housing and Urban Development</u>
- Marital Rates: <u>U.S. Census ACS 5-Year Estimates (2023)</u>
- Fertility Rates: <u>U.S. Census ACS 5-Year Estimates (2023)</u>