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Executive Summary 
 

A summary of the data, methodology, results, and conclusions related to the flood susceptibility analysis 

of the Lower Connecticut River Valley Region (LCRVR) can be found in Giovannettone et al. (2018).  

 

Regarding climatic factors affecting the LCRVR, an analysis looking at the major climatic mechanisms 

linked to rainfall in the region was performed through a simple correlation analysis between long-term 

total precipitation and long-term averages of nearly 40 climate indices.  It was found that by 

incorporating a time difference, or lag time, between the period over which rainfall is totaled and the 

corresponding period over which climate indices are averaged, 12 and 48 months maximized the 

predictive skill of the correlation.  The reason for incorporating a lag time is based on the assumption 

that the effects of a particular climate mechanism on rainfall do not occur immediately; there is some 

delay before the corresponding impact on rainfall manifests itself.  The 12-month lag time revealed a 

strong and significant correlation with El Niño, while the 48-month lag time revealed a strong and 

significant correlation with the Caribbean SST (sea-surface temperature) index.  The correlations at the 

48-month lag time were used to create a statistical model to predict future 48-month rainfall totals; 

predictions were shown to be relatively accurate when compared to historic observations. This model 

provides a long-term window into the future and can be used to predict the future onset and 

persistence of extended periods of high rainfall and drought. 

 

Local- and regional-scale statistical analyses were performed for the city of Hartford and for a region 

encompassing several Mid-Atlantic and Northeastern states to detect changes in historical rainfall 

statistics over and near the LCRVR.  Tests were performed on trends (i) in the Annual Maximum Series 

(AMS) of 24-hour rainfall and (ii) Peaks-Over-Threshold (POT). Slight linear trends were found at 

Hartford but were not significant at the 95% and 90% confidence levels.  On a regional level, 20% of rain 

gauges, including gauges in northwestern Connecticut, experienced statistically significant increases in 

AMS over the period of record, while 32% showed statistically positive trends in POT, which indicates 

significant increase in heavy rainfall outside of the LCRVR.  The change in the 70th and 98th percentiles 

of rainy day rainfall was also investigated to determine if the change in light/moderate rainfall is 

consistent with changes in heavier rainfall.  Comparing two periods (1955 – 1985 and 1986 – 2016) 

revealed that even though there are significant increases in heavy rainfall on a regional basis, there are 

very few locations that experienced a significant change in light/moderate rainfall, suggesting a 

disproportionate effect of climate change on heavier events as opposed to an overall wetter climate.  In 

contrast, as the local-scale analysis revealed no significant increase in heavy rainfall intensity and 

frequency, it is likely that the LCRVR has “beat the odds” by not experiencing an increase in heavy 

rainfall activity.  It is also possible that there may be some other effect, perhaps from Long Island Sound, 

that has caused differences in rainfall trends in the region.  This cannot be said for sure without 

additional analysis.  

An analysis of future rainfall projections was then conducted to determine how heavy rainfall will 

change over the LCRVR in the mid- and long-term future using data from the Intergovernmental Panel 

on Climate Change’s (IPCC’s) CMIP5 modeling experiments. The high emission Representative 

Concentration Pathway (RCP) 8.5 (W/m2) scenario was used to provide an upper bound on expected 

changes.  All raw model data used for future projections were bias-corrected by comparing model 

results from a historical period (1950 – 2005) to observations at the National Oceanographic and 
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Atmospheric Administration (NOAA) Global Historical Climatology Network (GHCN) rain gauge (ID# 

GHCND:USW00014740), at Hartford Bradley International Airport.   

Projections in the future Precipitation-Frequency (P-F) curve at Hartford were then investigated. It was 

found that projected mid-term (2045) and long-term (2075) P-F curves show increases across the full 

range of frequencies, with higher percentage changes occurring for the more frequent events. Results 

indicate that today’s 100-year 24-hour rainfall event will become a ~53-year event in 2045 and a ~45-

year event in 2075, whereas more drastic changes are seen for more frequent events. These and prior 

results demonstrate the importance of determining which present-day recurrence intervals (e.g. 100-

year) are important for land use and recovery planning, hazard mitigation, design standards and/or 

flood warning plans and then building socioeconomic models to show how a more frequent occurrence 

of such events will impact response and/or recovery costs. This analysis is also useful for informing the 

possible changes in the shorter-duration flash flood risk, which is more driven by precipitation compared 

to riverine flooding (especially on the Connecticut River). Although the latter is also driven by rain and 

snow, it is also driven strongly by additional factors such as upstream flow, land cover, impervious area 

and ice jams and dam releases.  

A series of three outreach workshops for community officials, an online survey of stakeholders, and a 

review of planning and regulatory documents throughout the region were conducted.  The workshops 

were used to review methodology and present results, and most importantly, to discuss the practical 

applications of the susceptibility mapping for community planning and operations, with a focus on 

resiliency.  Practical applications range from quantitative analysis of at risk property and infrastructure, 

for planning, to modifications of design standards for new development and post disaster recovery.  

 

1. Introduction and Literature Review 
 

 

The Introduction and Literature Review pertaining to the flood susceptibility analysis can be found in 

Giovannettone et al. (2018). 

 

2. Data and Method 

 

Flood Susceptibility 

A description of the data and methodology used to perform the flood susceptibility analysis can be 

found in Giovannettone et al. (2018). 

 

Analysis of Climatic Factors 
In addition to developing flood susceptibility maps, the impacts of climate variability and climate change 

on heavy precipitation in the LCRVR were studied. The impact of natural climate variability, which can 

have significant influence on year to year changes in heavy precipitation, was analyzed through a 
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correlation analysis using large-scale Hydro-Climate Indices (HCI’s).  HCI’s characterize repeated 

relationships between various climate regimes on a global scale and a host of associated hydrologic 

responses.  The effects of these climate regimes on regional hydrologic flow and reservoir operations 

have been heavily researched, and the HCI’s were developed to provide a quantitative point of 

reference for these relationships. The relationship between the climate and water supply has quickly 

evolved into a matter of national interest and concern during the past decade as periods of deep 

drought gripped several portions of the country creating regional water supply crises. Meanwhile, the 

impact of climate change was assessed from two perspectives: a historical analysis using observed, long-

record rain gauge data, and an analysis of future projections of daily precipitation from relatively high 

resolution downscaled atmospheric models forced with increasing greenhouse gas emissions. Below, we 

describe the data used in each analysis in more detail.  
 

Climate Variability 
In addition to trends in a changing climate, there also exist various mechanisms of low-frequency 

climate variability that can result in significant changes in weather over time.  The current study 

attempts to identify the climate mechanisms that affect precipitation in the LCRVR and surrounding 

region using various hydro-climate indices (HCI’s), including those given in Table 2-3.  The method used 

to accomplish this is referred to as “long-window” correlation analysis and entails utilizing a long-

duration (60-month) moving average of monthly index values and precipitation to smooth out much of 

the noise in both time series.  It was found that by incorporating a time difference, or lag time, between 

the period over which rainfall is totaled and the corresponding period over which climate indices are 

averaged, the predictive skill of the correlation could be optimized.  The reason for incorporating a lag 

time is based on the assumption that the effects of a particular climate mechanism on rainfall do not 

occur immediately; there is some delay before the corresponding impact on rainfall manifests itself.  

Various lag times between the two datasets were analyzed, and it was found that lag times near 12 and 

48 months resulted in the best correlations; further analyses were therefore limited to these two lag 

times.  Strong correlations provide a type of predictive mechanism by which future annual or multi-

annual precipitation can be estimated.  Longer lead times also allow a window into the future from 

which the onset and/or persistence of a long-term extreme event can be identified with substantial lead 

time. 

Precipitation data were obtained from the Global Historical Climatology Network (GHCN; see Menne et 

al., 2012) for locations throughout the States of Connecticut, Massachusetts, and Rhode Island, while 

the National Oceanographic and Atmospheric Administration (NOAA) contains a compilation of the 

climate index data used here (NOAA 2016).  Precipitation data were composited into 60-month rainfall 

totals, while climate index data were averaged over 60-month periods that lagged the rainfall periods by 

12 and 48 months for the short- and long-term analyses, respectively.   

The current analysis required the use of a frequency analysis software referred to as the HydroMetriks – 

Frequency Intensity Tool (Hydro-FIT), which was developed, tested, and validated, by HydroMetriks, Ltd.  

Hydro-FIT allows the identification of any of nearly 40 climate indices that correlate well with total 

precipitation over a user-specified period, which is defined by a beginning month, duration, and lag 

 

 

Table 2-3:  Abbreviations and names of global climate 

indices analyzed in the current study. 
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Index 

Abbreviation 

Index  Name 

SOI Southern Oscillation Index 

ONI Oceanic Niño Index 

EPI ENSO Precipitation Index 

TNI Trans-Niño Index 

MEI Multivariate ENSO Index 

NAO North Atlantic Oscillation 

AMO Atlantic Multidecadal Oscillation 

AMM Atlantic Meridional Mode 

CAR Caribbean SST Index 

PDO Pacific Decadal Oscillation 

NOI Northern Oscillation Index 

WP Western Pacific pattern 

PNA Pacific/North American pattern 

AO Arctic Oscillation 

EAWR Eastern Asia/Western Russia Index 

CIP Central Indian Precipitation index 

MJO Madden-Julian Oscillation 

 

time.  A previous version of Hydro-FIT had been used to perform such analyses for rainfall in South 

America and for hurricane genesis in the Atlantic Ocean (Giovannettone, 2017).  The strength of each 

correlation was measured using Pearson’s correlation coefficient, while the significance or the likelihood 

that a given correlation coefficient will occur while assuming there is no relationship in the population (r 

= 0.0) is measured using the statistical t-value and critical values from the Student’s t Distribution for 

two-tailed distributions: 

𝑡 = 𝑟√(
𝑛−2

1−𝑟2
),                       (3) 

where t represents the statistical t-value, r is the Pearson correlation coefficient, and n is the number of 

data values (n – 2 = degrees of freedom).  If the computed t-value is greater than a critical value, then 

the null hypothesis can be rejected and the correlation is significant at the selected confidence level. 

Historical Precipitation Analysis 
Daily rainfall records from the Global Historical Climatology Network (GHCN) (see Menne et al., 2012) 

were accessed. We focused on a region that has similar heavy precipitation statistics as the LCRVR, 

hereafter termed the LCRVR “climate region”. The LCRVR “climate region” was subjectively determined 

by analyzing precipitation-frequency data (e.g. Appendix A) and noting that the LCRVR behaves similarly 

to other rain gauges roughly within 250 km of the Atlantic Ocean. In all, gauges were selected based on 

the following criteria: 

• Roughly 250 km (155 miles) from Atlantic Ocean coastline, 

• Years with more than 9 days of missing data were excluded, 

• The last qualifying year was 2007 or later (see Appendix B), 

• At least 60 qualifying years. 
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Quantitative evidence of significant non-stationarity, which suggests that climate and flood risk are 

being altered through substantial anthropogenic changes, in heavy precipitation statistics was assessed 

using three methods, trends in Annual Maximum Series (AMS), trends in Peaks over Threshold (POT) and 

changes in the daily rainfall distribution, from 1955-1985 to 1986-2016 at various percentiles.  The AMS 

consists of a times series of annual maximum 24-hour precipitation totals, while the POT consists of a 

time series of the total number of days annually experiencing total precipitation over a pre-determined 

threshold. 
 

Future Projections 
The projected impact of climate change on rainfall intensity for medium (2045) and longer term (2075) 

planning purposes was estimated.  This analysis is especially useful for informing the possible changes in 

the shorter-duration flash flood risk, which is more driven by precipitation than riverine flooding 

typically is (especially on the Connecticut River). Although the latter is also driven by precipitation, it is 

also driven strongly by additional factors such as upstream flow as well as land cover and impervious 

area.  

The most comprehensive and commonly used source of climate change projections is organized by the 

Intergovernmental Panel on Climate Change (IPCC). We used data originating from IPCC’s 5th Assessment 

Report (AR5), which is the latest available report as of 2017. The findings in AR5 are based on the 

simulation of many Global Climate Models (GCMs) from institutions across the world. While GCMs are 

adequate for studying continental and global-scale changes in climate, computational limitations 

constrain their horizontal resolution to be inadequate for the local scale analysis such as the one here. 

Thus, some manner of “downscaling”, or using larger-scale variables to inform smaller-scale conditions, 

is required. A comprehensive dataset of downscaled Coupled Model Inter-comparison Project Phase 5 

(CMIP5) output was developed in 2014 by a joint effort of several federal, academic, and commercial 

partners (Brekke et al. 2013). Although we considered the use of this data, we ultimately decided 

against using it because it strongly underestimated daily heavy rainfall statistics over the LCRVR. 

Instead, results from a recent high-resolution downscaling effort called the North American Coordinated 

Regional Climate Downscaling Experiment (NA-CORDEX) were used. The NA-CORDEX was designed by 

taking the output of the relatively coarse GCMs belonging to CMIP5 and using these as boundary 

conditions to force much higher resolution atmospheric models centered on North America. Although 

many NA-CORDEX simulations were available, the analysis was restricted to those with the highest 

horizontal resolution of 11 km (7 miles). All selected simulations were forced by the Intergovernmental 

Panel on Climate Change’s (IPCC’s) CMIP5 modeling experiments high emission Representative 

Concentration Pathway (RCP) 8.5 (W/m2) scenario boundary conditions. The focus on just the high 

emission scenario was done for two reasons: (i) to provide for an estimate of an upper bound to the 

impact of climate change on heavy precipitation (because previous studies have shown a quasi-linear 

response of heavy precipitation to scenario in the LCRVR), and (ii) to allow for the investigation of 

multiple model simulations that would otherwise not be possible if multiple scenarios were chosen. 

Table A-1 in Appendix A shows the four model simulations that were analyzed. A fifth simulation, in 

which the RegCM4 was forced with the MPI-ESM-LR GCM, was available but not used because it had 

incomplete data.          
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3. Results 

Flood Susceptibility 
The overall results of the logistic analysis for each sub-region within the AOI are given in Giovannettone 

et al. (2018).  In summary, it was found that ‘elevation’ and ‘distance to water’ have the most influence 

on flood susceptibility in the urban and coastal sub-regions, whereas ‘elevation’ has substantially less 

influence within the rural sub-region with ‘distance to water’ and ‘surficial materials’ having the greater 

influence.  It was also found that ‘surficial materials’ has a strong influence in the coastal and rural sub-

regions, whereas it has little influence in the urban sub-region, while ‘land cover’ has the opposite trend.  

Finally, it was observed that the urbanization in the sub-region including and surrounding the City of 

Middletown has resulted in a significant increase (greater than 200 percent) in the contribution of ‘land 

cover’ to the flood susceptibility of the area. 

There were several areas identified as ‘very high’ and ‘high’ risk outside of the FEMA map, which 

includes various types of critical infrastructure (Giovannettone et al., 2018).  When comparing the 

susceptibility mapping to the FEMA 100-year flood maps, it is important to understand key distinctions 

between the two.  The FEMA 100-year flood maps are limited to the sub-watersheds of greater than one 

square mile that FEMA chose to study with limited resources.  Other limiting factors are the age of the 

underlying studies illustrated by the FEMA maps (often more than two decades old) and their focus on 

only areas where development existed or was imminently anticipated.  FEMA’s flood mapping is 

developed using physical models to perform hydrologic and hydraulic analysis of a statistical rainfall 

event with a one percent chance of being equaled or exceeded in any given year (referred to as the 100-

year flood).  In general terms, hydrologic analysis is the study of transforming rainfall amount into 

quantity of runoff.  Hydraulic analysis takes that quantity of water and uses a physical model to route it 

through existing terrain, while considering such factors as topography and vegetative density.  This 

modeling is referred to as “detailed analysis.”  Some areas are studied by “approximate methods.”  In 

general, areas studied by approximate methods use a simplified hydrologic analysis methodology and 

route runoff quantity through best available topography alone.   

 

The susceptibility maps from this study provide a less expensive method of covering all land area within 

the region. By using the statistical modeling methodology described in this report it was possible to 

identify the contribution of flood factors within the physically modeled FEMA 100-year floodplain and 

apply them to the entire study region to identify areas thought to be vulnerable to flooding.  One 

important disclaimer about the flood susceptibility map is that it was created for present-day conditions 

and is only to be used for planning purposes.  It is not intended to replace the FEMA mapping for 

regulatory or flood insurance decisions. 

The scale of the flood susceptibility map and data are most appropriately used at the regional scale.  

However, use of the data at the municipal scale should allow local officials to examine areas of concern 

for planning purposes.  A GIS tool, which accompanies this report, was developed to enable any location 

within the region to be looked at in more detail.  As more accurate input datasets (e.g. higher resolution 

LiDAR data and imagery) become available, they can be easily incorporated into an updated flood 

susceptibility analysis as well as a revised GIS tool.  Higher resolution input datasets also allow smaller 

areas to be analyzed in more detail if desired (e.g. the City of Middletown, which is dominated by an 

area of ‘very high’ flood susceptibility in the northern portion of the AOI in Fig. 3-3). 
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Climate Variability 

An idea of the climatic mechanisms that may contribute to precipitation and flooding in the region 

surrounding and including the LCRVR can be obtained from the results of the climate variability analysis 

shown in Fig. 3-4.   

It can be observed in Fig. 3-4 that there are a few dominant hydro-climate indices that correlate with 

precipitation throughout the State of Connecticut and the surrounding region for both the 12-month 

and 48-month lead times, which include indices related to the El Niño/Southern Oscillation (ENSO), the 

Madden-Julian Oscillation (MJO), and the Caribbean SST (sea-surface temperature) Index (CAR), which is 

a time series of SST anomalies averaged over the Caribbean Sea.  Within the LCRVR itself, ENSO has the 

highest correlation with precipitation at the 12-month lead time (Fig. 3-4a) using the beginning months 

given in Table 3-1, which contrasts with other sites within the State of Connecticut that correlate best 

with the MJO.  The strength of these correlations is between R = 0.60 to 0.79 (r2 = 0.36 to 0.62), which is 

strong enough to make qualitative predictions concerning whether the following 12 months will 

experience higher- or lower-than-normal precipitation, but was found not to be sufficient to make  

 

Figure 3-4:  Results of hydro-climate index analyses at several 

locations throughout the states of Connecticut, Rhode Island, and 

Massachusetts using lag times of (a) 12 months and (b) 48 months.  

The color and size of the circles represent the index and correlation 

strength, respectively. 
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Table 3-1:  Strong correlations between 60-month average 
climate index values and 60-month total precipitation were 
identified for Middletown and Cockaponset State Forest using 
the climate indices given in Column 3 and beginning months and 
lead times in Columns 2 and 4, respectively.   

City Precipitation 

Beginning 

Month 

Index Lead Time 

(months) 

Middletown, CT January ENSO 12 

Cockaponset, CT July ENSO 12 

Middletown, CT January CAR 48 

Cockaponset, CT January CAR 48 

 

quantitative predictions of future rainfall.  To perform a complete statistical analysis of each correlation, 

the significance was also estimated so that the null hypothesis that there is no relationship in the data 

can be rejected.  The results for the Student’s t test are given in the column labeled t/tcrit in Table 3-2.  

The first value represents the t-value computed for each site using the corresponding correlation 

coefficient (r) and number of data points (n).  The second value represents the critical value from the 

Student’s t distribution at the 0.01% confidence level.  The fact that the t-value does not exceed the 

critical value at Middletown means that the null hypothesis cannot be rejected at the 0.01% confidence 

level, but it was found that the t-value exceeds the critical value at the 0.05% confidence level (not 

shown).  The t-value for Cockaponset does exceed the critical value by a small amount, which means 

that the null hypothesis can be rejected at the 0.01% confidence level. 

Precipitation within the LCRVR was found to correlate strongest with the CAR at a 48-month lead time 

(Fig. 3-4b) using the beginning months given in Table 3-1, which again contrasts with other locations in 

the state.  In this case, the strength of the correlations at Middletown and Cockaponset are between r = 

0.80 and 0.99.  The results for the Student’s t test are given in Rows 3 and 4 of Table 3-2.  The fact that 

the t-value exceeds the critical value at both locations by a substantial amount means that the null 

hypothesis can be rejected at the 0.01% confidence level in both cases.   

Due to the high strength and significance of the correlations identified at a lag time of 48 months, 

predictions of 48-month rainfall using the respective linear relationships with CAR are made at 

Middletown and Cockaponset State Forest and compared to observations in Figs. 3-5a and b, 

respectively; model parameters are given in Table 3-2 for both the 12-month and 48 month correlations.  

Predictions closely match observations for almost all years where sufficient rainfall data were available 

except for a few short periods.  These results demonstrate that, using only one variable, long-term total 

precipitation can be predicted with good accuracy, which can be extrapolated to being able to predict 

long-term changes in precipitation accurately with sufficient lead time.  For example, the onset and end 

of a drought or an extended period of high rainfall are capable of being detected with a 48-month lead 

time, thus providing a method by which to estimate persistence long in advance. 
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Table 3-2:  Linear regressions were developed for Middletown and Cockaponset State Forest using 
the climate indices, beginning months, and lead times given in Table 3-1.  Columns 3 and 4 give 
the slope and intercept of the regressions, respectively, while Columns 5 – 7 give Pearson’s 
correlation coefficients (r), number of data points (n), and ratio of t-values to the critical value from 
the Student’s t distribution at the 0.01% confidence level for a two-tailed distribution.   

City Lead Time 

(months) 

Slope (m) Intercept r n t/tcrit 

Middletown, CT 12 -76.75 243.49 0.65 25 4.10/4.69 

Cockaponset, CT 12 40.82 241.91 0.74 23 5.04/4.78 

Middletown, CT 48 -276.54 241.81 0.81 22 6.18/4.84 

Cockaponset, CT 48 -162.10 233.62 0.87 18 7.06/5.13 

 

 

 
(a) 

 

 
(b) 

Figure 3-5: Time series of projected (line) vs. observed (circles) 48-

month total precipitation at (a) Cockaponset State Forest and (b) 

Middletown.     
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Climate Change 

Historical Analysis 
A local- and regional-scale statistical analyses to detect changes in historical rainfall statistics over the 

LCRVR was performed. For the local-scale, the Hartford-Bradley International Airport rain gauge was 

selected, from the Global Historical Climatology Network (id: USW00014740). This gauge had a nearly-

complete record of daily data from 1949 – present. Heavy precipitation statistics for the 

Hartford/Middletown area are shown in Appendix B. The magnitude of the 100-year 24-hour event is 

about 8.2 inches (Appendix B, Fig. B-1). Meanwhile, there is a distinct seasonality of heavy rainfall 

occurrence, with highest chances in the late summer and fall (Appendix B, Fig. B-2). For the regional-

scale analysis, we selected all long-record rain gauges within about 250 km of the Atlantic Ocean over 

the Mid-Atlantic and Northeastern states. This region experiences similar heavy rainfall statistics and 

thus can be considered a more general proxy for trends in the LCRVR’s climate. 

For the local and regional-scale analyses, we performed tests on trends (i) in the Annual Maximum 

Series (AMS) of 24-hour rainfall and (ii) Peaks-Over-Threshold (POT), where a threshold of 1.25 inches 

per day was used. For the regional analysis only, we also investigated the change in the 70th and 98th 

percentiles of rainy day rainfall. This allowed us to determine if the change in light to moderate rainfall 

amounts was consistent with changes in heavy rainfall days, respectively. 

Local-scale 

Figure 3-6 shows the Annual Maximum Series (AMS) of daily rainfall at the Hartford gauge, which ranges 

from about 1.5 inches to over 7.0 inches. A linear trend test was applied to this time series and revealed 

a weak positive trend, but the trend was not significant at the 95% and 90% significance levels. Due to 

the presence of isolated, very high amounts such as in 1955, 1982 and 1999, we also performed a 

Spearman correlation (less sensitive to outliers) between year and AMS and again found the correlation 

to be insignificant at the 90% and 95% confidence levels. 

 

 

Figure 3-6: Annual Maximum Series of daily rainfall at Hartford Airport over the 1949-2016 period. A linear 
trend is shown for reference, but this trend was NOT significant at the 95% confidence level. 
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Figure 3-7: As in Fig. 3-6, except for annual Peaks-Over-Threshold using 1.25 inches per day as the 
threshold. The trend line was NOT found to be significant at the 95% confidence level and is shown for 

reference only. 

 

Because AMS time series can have significant year-to-year variability that may mask longer-term trends, 

we also investigated the trend in POT with a threshold of 1.25 inches per day. The result, shown in Fig. 

3-7, shows a range of values from 2 to 15 days per year, though a linear trend was once again found to 

not be significant at the 90% and 95% confidence levels. 

Thus, our conclusion from the local-scale analysis was that there has not been a significant change in 

heavy rainfall statistics using the Hartford Bradley Airport gauge, which serves as a good proxy for the 

LCRVR. A regional-scale analysis was then performed to determine if the local-scale result can be 

corroborated when using other nearby rain gauges. 

Regional-scale 

The 3rd National Climate Assessment (NCA3; Melillo et al. 2014) has documented a substantial increase 

in heavy rainfall events across the Northeast United States. However, that analysis aggregated the 

Northeast US into a single region, which could have mixed together sub-regional differences (e.g. we did 

not find any increases in heavy rainfall at Hartford). Here, we perform a similar analysis as NCA3 but 

investigate trends in heavy rainfall frequency and intensity on a gauge-specific level for gauges in close 

proximity to the LCRVR. Because heavy precipitation is relatively rare and a single gauge could miss 

showing a trend due to chance, we include in the analysis gauges across the Northeast and Mid-Atlantic 

US, roughly within 250 km of the Atlantic Ocean. We chose this region because the heavy rainfall 

statistics are roughly the same within this region. This can be deduced by looking at the 100-year 24-

hour rainfall estimate from NOAA Atlas 14 (Fig. 3-8) – note that the contours roughly parallel the 

coastline.  

Gauges belonging to the Daily Global Historical Climatology Network (GHCN; Menne et al. 2012) were 

used in this analysis. A gauge must have at least 60 years of data to qualify, where a year is counted as  
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Figure 3-8: 100-year, 24-hour rainfall across the eastern United States (adapted from 
NOAA Atlas 14; see Perica et al, 2015 for details). 

 

qualifying if it had less than 10 missing days of data. A total of 179 qualifying gauges were found (using 

data through 2016), and trends in the AMS and POT (exceeding 1.25 inches per day), as well as changes 

in the distribution, were determined in a gauge-by-gauge manner. 

Figure 3-9 shows the trends in AMS of 24-hour rainfall for data through 2005 and 2016. The former is 

shown for comparison to highlight the drastic changes that have occurred over only the past 10 years. 

Looking at the right panel in Fig. 3-9, it is seen that out of 179 qualifying gauges, 36 (20%) show 

statistically significant increases in the AMS. By pure chance, we would only expect 10% (or 18 gauges) 

to show a trend (both positive and negative). Whereas, it is seen that there are no gauges that show 

significant decreases in AMS, providing substantial evidence that large-scale AMS trends are positive 

in the region. Note that the Hartford gauge does not show an increase, but gauges in northwest 

Connecticut do show increases.  

Figure 3-10 investigates regional trends in a different manner by considering trends in the POT 

(threshold: 1.25 inches per day). Similar results are observed as in Fig. 3-9, but now 57 (32%) of the 

gauges show statistically significant positive trends, while only two gauges show significant decreases. 

Figure 3-10 also shows that most of the gauges with significant positive trends are located in the 

northeast United States, with less significant results farther south. To some degree, Fig. 3-10 provides 

more robust evidence of increases in heavy rainfall statistics because this data includes many storms 

each year, whereas Fig. 3-9 only identifies the wettest storm each year. 
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Figure 3-9: Trends in the Annual Maximum Series of qualifying long-record gauges using data through (left) 

2005, and (right) 2016. A 95% confidence level is used to denote statistical significance. 

 

 
Figure 3-10: As in Fig. 3-9, except for annual Points-Over-
Threshold. A 95% confidence level is used to denote statistical 
significance.  

 

Figure 3-11 shows the changes in 70th and 98th percentiles of rainy day rainfall for each gauge. This was 

calculated by determining the 70th and 98th percentiles of daily rainfall separately during 1955-1985 and 

1986-2016 periods and then dividing the latter value by the former. Statistical significance is more 

difficult to assign in such a scenario because the value depends on each gauge’s distribution; however, a  
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Figure 3-11: Percent changes in the (left) 70th and (right) 95th percentiles of rainy day rainfall, when 
comparing the 1955-1985 and 1986-2016 periods. For the Hartford, CT gauge, the 70th percentile is about 0.40 
inches per day; the 98th percentile is about 1.95 inches per day. 

 

change exceeding +/- 10% can roughly be used as a guideline for statistical significance. Focusing first on 

the 98th percentile changes, it is seen that the results of Figs. 3-9 and 3-10 are largely corroborated, 

though even more gauges now show significant increases in heavy rainfall. For example, 75 gauges 

(42%) now show significant increases, while zero gauges show significant decreases (exceeding 15%). A 

secondary interesting finding can be seen in the left panel of Fig. 3-11, which shows that there have 

been no significant changes in the 70th percentile (though regionally, increases are seen in the NY, CT, 

and MA area). This suggests that it is the heavy rainfall events that are being disproportionately 

influenced by climate change as opposed to an overall wetter climate. 

Whereas the local-scale analysis of Figs. 3-6 and 3-7 show no significant increase in heavy rainfall 

intensity and frequency at the Hartford gauge, Figs. 3-9 and 3-10 show significant regional-scale 

increases. Thus, we can conclude that it is likely that the LCRVR has “beat the odds” by not experiencing 

an increase in heavy rainfall activity at this point. This is not entirely unexpected due to the hit-or-miss 

character of heavy rainfall events. Next, an analysis of future rainfall projections is conducted to 

determine how heavy rainfall will change over the LCRVR in the mid- and long-term future. 

Future Projections 
To investigate future projections of heavy rainfall events in the LCRVR, data from the IPCC’s CMIP5 

modeling experiments were used. However, using raw Global Climate Model (GCM) data would be 

insufficient for informing regional and local-scale rainfall. Thus, we used output from the North 

American Coordinated Regional Modeling Experiment (NA-CORDEX; Castro et al. 2015). NA-CORDEX is a 

set of medium- to high-resolution regional models that uses boundary conditions from the CMIP5 GCMs 

(refer to Table A-3 in Appendix A). Although NA-CORDEX used both RCP4.5 (medium emission) and 

RCP8.5 (high emission) scenarios, we accessed only the latter. The rationale for this was that if a strong 

signal was found for RCP8.5, it may warrant consideration of other conditions. On the contrary, if no 

significant changes were found for RCP8.5, then it is unlikely that other scenarios would show significant 

changes. 
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Daily model output of precipitation was accessed over the 1950 – 2100 period. The 1950-2005 period 

was termed a “historical hindcast” where observed greenhouse gas forcing was used, whereas, the 

2006-2100 period was forced by RCP8.5 emissions. Greenhouse gas forcing refers to the effects of 

changes in atmospheric greenhouse gas concentrations on radiative forcing (see the Atmospheric 

Concentrations of Greenhouse Gases indicator). Energy that radiates upward from the Earth’s surface is 

absorbed by these gases and then re-emitted to the lower atmosphere, which results in a warming of 

the Earth’s surface.  After obtaining the required data, the first step in assessing future rainfall was to 

compare model climatology with the Hartford gauge over the historical period. Figure 3-12 shows that 

three of the four models were slightly wetter than observations, while one model was drier than 

observations. Figure 3-12 was used to perform a bias correction through quantile mapping (Themeßl et 

al. 2011). In this procedure, the model daily rainfall amount is first converted into a quantile (quantile 

increment was 0.005) and then mapped to its analogous quantile using the Hartford rain gauge data.  

To determine future rainfall amounts, the raw model data for the 2006 – 2100 period was corrected 

using the same quantile mapping transfer function. Thus, the key assumption is that the future 

quantile-quantile relationship is identical to the past (Themeßl et al. 2011). However, in situations 

where future modeled rainfall exceeded the highest value over the historical modeled period, the 

quantile-quantile ratio of the highest historical modeled value was applied. In practice, this was only 

noted to happen on, at most, five different future days for any given model simulation.  

 

 

Figure 3-12: Quantile-quantile plots comparing modeled 24-hour precipitation with the Hartford gauge over 
the historical period. The blue line represents the result for a perfect model. Points to the right of the line 
imply the model is wetter than observations, while points to the left of the line show the model is drier. 
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After bias corrected future projections of daily rainfall were computed using quantile mapping, potential 

changes in the future Precipitation-Frequency (P-F) curve were investigated. The P-F curve is derived by 

fitting a distribution to Annual Maximum Series of daily rainfall. Analogous P-F curves can be developed 

for other durations, but our model output, and thus our focus, was restricted to daily rainfall.  

Figure 3-13 shows that after bias-correction, a Generalized Extreme Value (GEV) distribution provides an 

excellent fit to the observed empirical Hartford P-F data within the 90% confidence level. The 90% 

uncertainty band was calculated by randomly sampling the historically modeled time series 1000 times 

and calculating a Generalized Extreme Value (GEV) for each randomization. Similar uncertainty 

estimates were prepared for future projections. The excellent fit in Fig. 3-13 confirmed that we could 

use the historical model simulations as a baseline to which future model simulations could be compared. 

Figures 3-14 and 3-15 show the projected mid-term (2045) and long-term (2075) P-F curves compared to 

the historical period. The mid-term value was calculated using data from 2026-2065, while the long-

term value was calculated using data from 2056-2095. Bias-corrected model projections were 

concatenated into a single 160-year time series to estimate future P-F curves. This was done after 

testing each individual model’s projection and finding little difference between each model, which was 

somewhat expected because bias-correction was applied. Figures 3-14 and 3-15 show increases in the P-

F curve across the full range of frequencies. However, the highest fractional changes occur for higher 

frequency (i.e. more frequent, lower intensity) events.  

 

Figure 3-13: Hartford rain gauge empirical Precipitation-Frequency curve (+) compared to a 
Generalized Extreme Value distribution fit to bias-corrected historical model output. The GEV is 

assumed to be the best distribution for the Hartford gauge. 
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Figure 3-14: Modeled Precipitation-Frequency curves for the Hartford area. The black line and gray shading 
denote historical (1950-2005) conditions while the red line and light red shading denote the estimate for the 
2045 period. 

 
Figure 3-15: As in Fig. 3-14 except for the 2075 period. 
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Table 3-3: Percent changes in projected 24-hour rainfall at 
Hartford by 2045 and 2075. Bold font denotes projections 
are outside the band of historical uncertainty. 

Return Period Change in 2045 Change in 2075 

1 year +17% +25% 

2 +19% +27% 

5 +18% +24% 

10 +17% +22% 

20 +16% +20% 

50 +15% +17% 

100 +14% +15% 

 

Table 3-3 summarizes the percent changes in the most likely P-F curve value for the 2045 and 2075 

periods. In general, increases up to 19% are found by 2045, while increases up to 27% are found by 

2075. Comparing the uncertainty bands between the future and historical periods shows that the future 

band is completely outside of the historical band for up to the 5-year event by 2045 and up to the 10-

year event by 2075. Increases found here appear to be slightly less than those described by Prein et al. 

(2016), who found increases of between 30 and 50% in the statistics of shorter duration hourly heavy 

rainfall across the LCRVR. 

Another perspective on interpreting the results in Figs. 3-14 and 3-15 is to compare how current return 

periods are projected to change. For example, Fig. 3-14 shows that today’s 100-year 24-hour rainfall 

event will become a ~53-year event in 2045, while Fig. 3-15 shows that it will become a ~45-year event 

in 2075. More drastic changes are seen for more frequent events. For example, a current 20-year event 

will become a ~12-year event by 2045 and a ~8-year event by 2075. Thus, one method of assessing the 

practical impacts from these changes is by determining which present-day recurrence intervals (e.g. 100-

year) are important for design standards and/or flood warning plans and building socioeconomic models 

of how a more frequent occurrence of such events will impact response and/or recovery costs. 

A notable disclaimer about the analysis presented herein is that there was little effort placed in 

investigating the climate dynamics causing the changes. For example, it is not entirely clear whether the 

changes are arising from stronger Nor’easters, tropical cyclones, and/or stationary frontal systems, all of 

which can cause heavy rainfall in the LCRVR. It is suggested that any further analyses on this topic more 

closely investigate these respective processes, which could increase the confidence that we can place in 

the final results. 

4. Practical Applications of Study Findings 
 

Another part of the study included outreach to community officials from the 17 municipalities and select 

additional stakeholders.   An online survey and a series of three workshops were held throughout the 

LCRV region.  A cursory review of representative planning and regulatory documents was also 

performed to determine how, in general, communities are addressing flooding conditions outside of 

FEMA mapped flood hazard areas. Table 4-1 lists the municipal departments and stakeholders that were 

invited to participate in the workshops and the survey.   
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 Table 4-1: Survey and Workshop Participant Invitees. 

Municipal Officials Other Stakeholders 

Town Planners CT Maritime Trades 

Town Engineers U.S. Coast Guard 

Public Works Directors CT Institute of Resilience and 

Climate Adaptation (CIRCA) 

Emergency Management Directors U.S. Army Corp of Engineers 

Economic Development Directors Land Trusts 

Public Health Officials Nature Conservancy 

Agricultural Commission CT Department of Energy and 

Environmental Protection  
CT Department of Housing 

 

Workshops 
The workshops included the following content:  

Workshop 1 – March 28th, 2017 - 1-3pm, Haddam Fire Department Rec, 439 Saybrook Rd, Higganum  

Provided an overview of the project and an update on its status. A brief overview of planning in the 

region around this hazard was presented and input sought on factors that contribute to flooding. Input 

was also sought on the format of the subsequent workshops.  

 

Workshop 2 – April 18th, 1-3pm, Old Lyme Town Hall Meeting Room, 52 Lyme St., Old Lyme  

Provided an overview of the flood susceptibility model and near final mapping. There was a breakout 

session to review mapping in the GIS viewer and to provide feedback.  

 

Workshop 3 – May 9th, 1-3pm, Middletown City Hall, Council Chambers, 245 DeKoven Dr., 

Middletown Focused on using the results and products of the study to foster public awareness, 

resilience action and public policy for the region. It included recommendations or best practices for 

planning documents, capital budgeting, and regulatory tools.  
 

Survey 
The survey was completed by 27 respondents, nearly all of whom answered all questions asked.  The 

distribution of respondents among the community officials listed in Table 4-1 was nearly even, with the 

exception of no responses from agricultural commissions and fewer from economic development 

officials.  There were more responses from Town Planners.  Approximately 30% of the overall responses 

came from those listed in the stakeholder column.  Distribution of survey responses were also fairly 

even across the communities in the region, with noticeably higher responses from Old Saybrook, Essex 

and East Haddam and none from Lyme and Middlefield.  

 

Notable findings of the survey included:  

• 48% of respondents felt there have been moderate increases in flooding due to high intensity 

rainfall events in the last 10-years 

• 65% of respondents believed that the stormwater system capacity in their community needed at 

least some improvements to handle future storm events 
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• 60% of respondents believed that community plans (e.g. Hazard Mitigation, Conservation and 

Development, Emergency Management) do not adequately address the impacts of climate 

change on future flooding conditions 

• 55% of respondents indicated the residents are somewhat (50%) or very (5%) concerned about 

the impacts of climate change 

• When asked which planning, regulatory or policy documents were best suited to address future 

flooding issues, the distribution was fairly even, with the most respondents indicating Hazard 

Mitigation Plans and Plans of Conservation and Development as the best places.  Zoning 

Regulations were a close third.  

• Roads and bridges, residences and businesses, and the environment were ranked as most at 

risk, respectively.  

 

Full results of the survey are included in Appendix D.  

Review of Planning Documents 

 As part of a previous project, Dewberry conducted a review of planning and regulatory documents from 

the 17 communities in the region.  To supplement that review, representative plans from urban, rural 

and coastal communities were also performed as part of this project.  Reviews included:  

• Plans of Conservation and Development (POCD) 

• Hazard Mitigation Plans (HMP) 

• Coastal Resilience Plans (CR) 

• Zoning / Subdivision Regulations 

 

Findings from the review included:  

• Thirteen of the 17 communities have a flood/hazard element or chapter in their POCD. 

o East Hampton, Lyme, Middletown and Old Lyme do not 

o Most do not get specific about flooding type and trends as they are broader-based, long 

term policy documents. 

o Older plans (not updated in the last 3-5 years) do not address climate change in a 

comprehensive way. 

o Most or all do not call out increased intensity rainfall events and associated drainage 

flooding issues.  

• All of the communities have or participate in a regional hazard mitigation plan. 

o Most plans use FEMA inundation mapping, coastal storm surge, and sea level rise layers 

to evaluate risk 

o Some plans mention high intensity rainfall events as problematic, but most do not 

address it in terms of climate change. 

o Many plans address “hot spots” of localized flooding, mostly anecdotally.  

o Many plans have mitigation actions that address specific infrastructure or drainage 

improvements.  

• Old Saybrook is the only community in the region that is developing a Coastal Resiliency Plan. 

• Most Zoning and National Flood Insurance Program (NFIP) ordinances rely on FEMA mapping 

alone for regulating flood prone development.  

• Subdivision and site plan review usually include peak flow and stormwater volume provisions.  

o Most look at existing sources of rainfall data to design – not future conditions.  
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Applications of Flood Susceptibility Mapping and Climate Data 
This section builds upon the findings from the survey, review of plans, and discussions at the workshops 

(primarily Workshop 3) to outline some of the ways that the data from this study can be practically 

utilized at the local level to increase flood resilience. It is not intended to be an exhaustive analysis of 

practical applications. The U.S. Environmental Protection Agency (EPA) published a document entitled: 

Planning for Flood Recovery and Long-Term Resilience in Vermont:  Smart Growth Approaches for 

Disaster-Resilient Communities (EPA 231-R-14-003 – July 2014).  In addition to the applications discussed 

below, that document provides an excellent overview of flood recovery and resilience actions that can 

be taken at the local level.  In the appendices of the document is a Flood Resilience Checklist.  That 

appendix is included for reference in this document as Appendix E.  

Plans of Conservation and Development 
Communities can use the study and associated mapping to incorporate discussion of flooding other than 

the Federal Emergency Management Agency (FEMA) mapped flood hazard area.  Plans could reference 

the flood susceptibility mapping and the importance of increased scrutiny on development and 

infrastructure siting in areas outside of the FEMA mapping that share flood risk factors in common.  The 

susceptibility mapping is more granular than the FEMA mapping and includes areas outside of the FEMA 

mapped floodplain.  The FEMA mapping program typically only studied sub-watersheds greater than 

one square mile.  The focus was on developed areas and those where development was anticipated at 

that time.  Many areas were purposefully not mapped by FEMA to save limited resources or because 

development was not expected to occur there at the time of mapping, which in most cases was more 

than a decade ago.  A complete listing, by water body, including dates studied and methods used can be 

found in Sections 1.0 and 2.0 of the February 6, 2013 FEMA Flood Insurance Study report for Middlesex 

County, Connecticut.  The susceptibility mapping created by this project includes all land area in the 

region. For the towns of Lyme and Old Lyme, the same listings are available in the same sections of the 

August 5, 2013 FEMA Flood Insurance Study report for New London County, CT.  

 

Discussion of the factors that contribute to flooding, as identified in the report, can be used to guide 

policy that will ensure that future activities are not making those factors contribute more (e.g. increases 

in impervious surfaces).  Areas outside of the FEMA mapped floodplain could be noted for further 

evaluation and, if warranted, conservation.  

 

In general, POCDs can use the data to encourage review of subdivision and development review policies 

to incorporate flood susceptibility outside of the FEMA floodplain.  POCDs can reference Hazard 

Mitigation Plans for more specific strategies and actions.  Use of climate change projections to compare 

how current return periods are projected to change. For example, Fig. 3-14 (above) shows that today’s 

100-year 24-hour rainfall event will become a ~53-year event in 2045, while Fig. 3-15 (above) shows that 

it will become a ~45-year event in 2075. More drastic changes are seen for more frequent events. For 

example, a current 20-year event will become a ~12-year event by 2045 and a ~8-year event by 2075. 

Thus, one method of assessing the practical impacts from these changes is by determining which 

present-day recurrence intervals (e.g. 100-year) are important for design standards and/or flood 

warning plans and building socioeconomic models of how a more frequent occurrence of such events 

will impact response and/or recovery costs. 
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Hazard Mitigation Plans  
Many of the applications noted for POCDs can also be applied to Hazard Mitigation Plans (HMPs).  

Additionally, the following uses should be considered: 

• Use flood susceptibility mapping to overlay and quantify what is at risk in areas outside of the 

FEMA Special Flood Hazard Area (SFHA). 

• Evaluate contributing factors to determine what mitigation could be done to minimize their 

impacts. 

• Compare and align mapped areas of susceptibility with community identified “hot-spots” of 

flooding. 

• Use the model and mapping to prioritize mitigation actions. 

• Build in a strategy to periodically update the model with new storm data or higher resolution 

datasets in general.  

• Identify strategies to further study most impactful susceptible areas (e.g. physical models).  

 

Zoning and Ordinances 
The following are a few examples of considerations for updating zoning regulations or ordinances:  

• Consider using flood susceptibility mapping to create or contribute to a flood hazard overlay 

zone. 

• Create a future flood conditions overlay based on climate change analysis.  

•  Consider using flood susceptibility mapping done at a local scale to help inform some level of 

protection for new construction in susceptible areas not on FEMA mapping (e.g. graduated risk 

zones). 

• Require developers to conduct further analysis of flood potential (e.g. physical models) in 

susceptible areas not mapped by FEMA. 

 

Design Standards for Subdivisions and Site Plan Review 
Many communities already use some or all of the techniques described below to reduce increase flood 

flows and volume resulting from new development.  In general, development in areas identified on the 

susceptibility mapping should undergo additional scrutiny.  If further “in-field” analysis confirms that 

areas outside the FEMA Special Flood Hazard Areas (SFHA) that are identified as susceptible, based on 

common flood risk factors, are indeed at risk, floodplain building design and development standards 

should be used in those areas.   

• Consider using or developing a stormwater model ordinance for green infrastructure. 

• Require developers to make decisions informed by future climate, and local governments to 

incorporate climate change into decision-making processes.  

• Use Bioretention to collect stormwater runoff. 

• Use permeable pavement to allow runoff to flow through and be temporarily stored prior to 

discharge. 

• Use Underground storage systems to detain runoff in underground receptacles. 

• Use retention ponds to manage stormwater. 

• Use extended detention wetlands to reduce flood risk and provide water quality and ecological 

benefits. 
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Capital Improvement Planning 
During the annual budgeting cycle, the results of this study could be used to:  

• Assist with prioritization of stormwater improvement projects;  

• Assist with decision making around siting infrastructure and public facilities; and,  

• Make arguments for the funding of additional studies in identified susceptible areas.  

Emergency and Evacuation Planning  
Areas on the flood susceptibility mapping, particularly those that are not mapped by FEMA and which 

intersect with roads and bridges, should be considered when developing flood evacuation routes.  

Overlaying the mapping with more local transportation layers will identify areas to be further evaluated 

for low lying roadways.  

Long Term Recovery Planning 
In the event of a catastrophic flooding event, such as Hurricane Sandy, or a large dam breach, mapped 

areas of susceptibility could be considered in the rebuilding decision making process.  

 

5. Summary 

Flooding is one of the most severe and potentially devastating natural disasters that can occur.  

Awareness of areas that are currently prone and will be more prone to flooding in the future is essential 

to consider in short-term, as well as long-term, planning.  Such awareness comes from an understanding 

of a combination of not only regional climatic factors, but also of non-climate factors that relate to 

regional and site characteristics. 

A summary and conclusions from the flood susceptibility analysis can be found in Giovannettone et al. 

(2018).  One important disclaimer about the flood susceptibility map that was developed herein is that it 

was created for present-day conditions and is only to be used for planning purposes. There are several 

prominent factors that could affect the future flood susceptibility map: changes in impervious area 

(through urbanization), a higher sea level (for coastal areas) and heavier precipitation. A future flood 

susceptibility map can be created by studying how these factors are expected to change. However, it is 

expected that the present-day flood susceptibility map provides an excellent relative foundation from 

which to consider future changes. In other words, it is logical to assume that higher-risk present-day 

regions will remain as higher-risk regions in the future.  As part of this study an Environmental Systems 

Research Institute, Inc. (ESRI) geographic information system ArcGIS software map document file is 

available for the region’s municipalities for future planning analysis containing the flood susceptibility, 

land use, and critical infrastructure datasets created as part of this project.  Please contact the Lower 

Connecticut River Valley Council of Governments to obtain this data. 

 

Regarding climatic factors affecting the LCRVR, it was found that El Niño correlates with total rainfall at 

Middletown and Cockaponset State Forest (significance at the 0.05% and 0.01% levels, respectively) 

when using a lead time of 12 months, whereas the Caribbean SST index showed stronger correlation 

strength at a 48-month lead time (significance at the 0.01% level for both).  The strength and 

significance of these correlations and the fact that future 48-month precipitation could be predicted 
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with substantial skill using statistical models based on these correlations demonstrates the potential for 

using such an analysis as a tool to estimate the onset and persistence of long-term extreme events.  

Insight into the onset and persistence of a present or future drought with a 48-month or even a 12-

month lead time represents valuable information within the water resources management and 

agricultural sectors, for example.   

 

Local- and regional-scale statistical analyses were also performed for the city of Hartford and for a 

region encompassing several Mid-Atlantic and Northeastern states, respectively, to detect changes in 

historical rainfall statistics over the LCRVR.  Slight linear trends in the Annual Maximum Series and 

Peaks-Over-Threshold were identified at Hartford but were not found to be significant.  In contrast, 

several gauges, including some within Connecticut, revealed statistically positive trends.  It was also 

found that there were significant increases in heavy rainfall at several locations on a regional basis, but 

less so when looking at more frequency rainfall events.  Also, even though local-scale analyses of rainfall 

within the LCRVR revealed no significant increase in heavy rainfall intensity and frequency at Hartford, 

the fact that significant regional-scale increases were identified suggests that it is likely against the odds 

that the LCRVR has not seen an increase in heavy rainfall activity. The contrast between the local and 

regional analyses is likely due to the hit-or-miss character of heavy rainfall events. An analysis of future 

rainfall projections was then conducted to determine how heavy rainfall will change over the LCRVR in 

the mid- and long-term future. 

An analysis of future rainfall projections was then conducted to determine how heavy rainfall will 

change over the LCRVR in the mid- and long-term future using bias-corrected data from the IPCC’s 

CMIP5 modeling experiments and the high emission scenario.  Final conclusions related to future 

projections, in addition to the historical analysis, can be summarized as follows: 

• Results from the local-scale historical analysis reveal that a significant change in heavy rainfall 

statistics at Hartford, which serves as a good proxy for the LCRVR, has not been detected. 

• A regional-scale historical analysis did reveal that heavy rainfall events are being 

disproportionately influenced by climate change, as opposed to a transition to an overall wetter 

climate, at additional locations in close proximity to the LCRVR. 

• Local future analyses revealed increases in projected mid-term (2045) and long-term (2075) 

Precipitation-Frequency curves at the city of Hartford for all event frequencies. 

• Future analyses at Hartford also revealed that today’s 100-year 24-hour rainfall event is 

estimated to become a ~53-year event in 2045 and a ~45-year event in 2075 

• Even though the historical analysis revealed a heavier influence of climate change on less 

frequency events, future projections are suggesting that more drastic changes will occur for 

more frequent events. 

These conclusions demonstrate the importance of determining which present-day recurrence intervals 

(e.g. 100-year) are important for land use and recovery planning, hazard mitigation, zoning, design 

standards and/or flood warning plans and then building socioeconomic models to show how a more 

frequent occurrence of such events will impact response and/or recovery costs. 

6. Future Work 

Projects and studies that utilize novel methods in accomplishing their final objectives typically identify 

several additional new directions in which to extend the work as well as additional questions that come 



Lower Connecticut River Valley Council of Governments 
July 2018 

27 
 

up as a result of the analysis and final conclusions.  The current project is no exception with the 

following list providing potential avenues for future work: 

- Utilize local experts’ and residents’ experiences related to flooding in the region to ground-truth 

the 100-year flood susceptibility map that was developed in the current study. 

- Maintain awareness of data collection for future events. Given the increase in forecast skill of 

severe floods, it may be possible for River COG to work with its neighbors/partners to make sure 

that any future flood inundation events are well sampled by specialized satellite and/or 

synthetic aperture radar missions. These would provide the horizontal resolution to significantly 

enhance the current model past the 30-m grid size. 

- Create additional flood susceptibility maps for more frequent flood exceedance frequencies 

using the method used for the 100-year flood events.  This is limited by the availability of 

satellite data during maximum inundation caused by the flood, but images for very frequent 

events (e.g. 5-year) should be available and would provide inundation information for floods 

that are considered a frequent annoyance rather than a potentially rare disaster. 

- Re-run the analysis for future flood events.  If and when a flood event occurs in the future over 

the LCRVR and resources and satellite imagery permitting, recreate a flood susceptibility map 

for the exceedance frequency associated with the event.  The final goal would be to analyze a 

sufficient number of events of varying frequencies to enable interpolation of the risk factor 

regression coefficients for any flood event exceedance frequency. 

- Test the effect of the flood risk factor ‘impervious area’ by performing the logistic regression 

while excluding the flood risk factor ‘land cover’.  ‘Impervious area’ did not show a strong 

correlation with flooding as indicated by the low regression coefficients in Table 2-2, while ‘land 

cover’ did show an increasing trend between the rural and urban sub-regions.  One hypothesis 

for this result concerns the fact that ‘land cover’ and ‘impervious area’ overlap in terms of the 

type of information that they convey; this may affect the results in that one of these risk factors 

(e.g. ‘land cover’) drowns out the effects of the other (e.g. ‘impervious area’).  This hypothesis 

can be tested by rerunning the analysis without considering ‘land cover’ to determine if the 

contribution of ‘impervious area’ becomes more significant. 

- Encourage the development of improved datasets related to flood risk factors that were 

identified as having substantial impacts on flooding in each sub-region; this would include the 

flood-risk factors ‘elevation’, ‘distance to water’, and ‘land cover’.  Improved resolutions (e.g. 30 

meters to 1 meter) of each input dataset would contribute substantially to improved flood 

susceptibility maps at any desired exceedance frequency.   

- As resources permit, flood susceptibility map(s) should be revised, which includes rerunning the 

analysis described in this report, as improved datasets of flood risk factors become available. 
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APPENDIX A: Input Data Metadata 
 

Table A-1:  NA-CORDEX experiments used for this analysis. All simulations were conducted using 11-km 

resolution modeling and RCP8.5 scenario boundary conditions. 

Modeling Agency Responsible for 

Global Climate Model 

Global Climate Model 

(Boundary) 

Regional Climate 

Model 

Canadian Centre for Climate 

Modeling and Analysis (Canada) 

CanESM2 CanRCM4 

Geophysical Fluid Dynamics Lab 

(United States) 

GFDL-ESM2M RegCM4 

Geophysical Fluid Dynamics Lab 

(United States) 

GFDL-ESM2M WRF 

Met Office Hadley Centre (United 

Kingdom) 

HadGEM2-ESM RegCM4 
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APPENDIX B: NOAA Atlas 14 Heavy Precipitation Statistics for 

the Lower CT Region 
 

 
Figure B-1: Precipitation-frequency curves for 24-hour rainfall for a location near 
Middletown, CT. The black curve is the most likely estimate, while the green and 
red curves denote the high and low bounds using the 90% confidence level. 

 

Figure B-2: Seasonality analysis for 24-hour precipitation for a location near Middletown, CT 
(same location as Fig. B-1). The percent chance of observing an event exceeding the indicated 
threshold is shown for the 2-, 5-, 10-, 25-, 50- and 100-year recurrence interval. Note that the 
late summer and fall months show the highest probabilities of occurrence.  
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APPENDIX C: Climate Modeling 

A substantial amount of evidence (Flato et al. 2013) exists showing that climate change has already 

begun to affect the distributions of atmospheric variables. Figure C-1 shows the simulation of global 

temperature from a complementary set of Global Climate Model experiments with (red line) and 

without (blue line) anthropogenic emissions of greenhouse gases (Kam et al. 2016). Note the simulations 

with anthropogenic emissions are in excellent agreement with historically observed temperature (black 

line). The modeling suggests that, at least for temperature, the separation point after which the 

anthropogenic-forced climate differs from its natural state occurred in the late 1970s. This provides a 

complication for the stationarity analysis herein, since choosing stations (even those with long records) 

that have limited observations after the 1970s will be less affected by climate change those with a more 

recent record. To address this issue, we removed stations that did not have a qualifying record after 

2007, providing about 30 years of “climate-change affected” data. 

 

 

Figure C-1: Annual mean surface temperature anomalies (°C) for the globe. Red 
(CMIP5–ALL) and blue (CMIP5–NAT) curves indicate ensemble mean simulated 
anomalies through 2015 and 2012, respectively, with each available model weighted 
equally; orange curves indicate individual CMIP5–ALL ensemble members. Black 
curves indicate observed estimates from HadCRUT4v4 (solid) and NOAA NCEI 
(dotted). All time series are adjusted to have zero mean over the period 1881–19. 
[Reproduced from Kam et al. 2016; their Fig. 2.1(e)]. 
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APPENDIX D: Community and Stakeholder Survey Results 
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APPENDIX E: Flood Resilience Checklist 
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