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Flood Susceptibility Map of the Lower Connecticut River Valley Region:
Extended Analysis

Introduction

In 2017 a flood mapping study was performed for the Lower Connecticut River Valley Region (LCRVR).
Several methods were considered to estimate flood susceptibility. The final selected method involved a
method called logistic regression, which is a statistical method that uses several variables (in our case
flood risk factors) that allows the development of an equation to estimate the chance that a location will
be inundated by a particular flood. The flood risk factors represent site characteristics that could
potentially affect the region and for which sufficient data are available. Flood risk factors considered
include elevation, slope, land curvature (concave, convex, or flat), distance to water body, land cover,
vegetative density, surficial materials, soil drainage class, and percent impervious surface. The objective
was to link each of the flood risk factors to the extent of a flood event that occurs once every 100 years.
Due to the fact that the overall quality of recent satellite images, after flooding events, over the region
was not sufficient for this analysis, it was decided to use the 100-year FEMA floodplain to estimate the
extent of a typical 100-year flood.

The LCRVR in the initial phase of the study was not analyzed as one large region but was divided into
three sub-regions (urban, rural, and coastal) to determine the differences in the contributions of each
flood risk factor to flood susceptibility between an urban and a rural area and between inland vs. coastal
areas; the expanded analysis discussed below assesses how the results change if the LCRVR is analyzed
as one region. Flood risk factors within each sub-region in the original analysis were sampled at 4,000
randomly selected points from datasets having a 30-m resolution; the effect of using high-resolution
datasets for the elevation and land cover flood risk factors is tested in the expanded analysis below. An
equal number of these points were selected in locations that were within and outside of the FEMA 100-
year floodplain for each sub-region. The data for each flood risk factor were selected from all locations
using ArcGIS and associated with a ‘1’ if the location was within the floodplain and a ‘0’ otherwise. The
resulting relationships between each flood risk factor and inundation due to a 100-year flood event
were assessed by ingesting all sample data into a logistic regression. Logistic coefficients were obtained
for each flood risk factor and used to develop an equation that estimates the chances of inundation.
The magnitude of the coefficients indicates the relative strength of each flood risk factor’s influence on
flooding in a sub-region; positive coefficients mean that an increase in a particular flood risk factor
increases flood susceptibility, while negative coefficients infer that an increase in a flood risk factor
reduces flood susceptibility.

The overall results identified ‘elevation’ and ‘distance to water’ as having the most influence on flood
susceptibility in the urban and coastal sub-regions, while ‘distance to water’ and ‘surficial materials’
dominate in the rural sub-region. The resulting equations for each sub-region were finally used to
create an overall probability map of the LCRVR; no consideration was given to whether a particular flood
risk factor was found to be significant when including it in the equation. Estimated probabilities were
classified as either 0 —20% (“very low risk”); 20 — 40% (“low risk”); 40 — 60% (“medium risk”); 60 — 80%
(“high risk”); or 80 — 100% (“very high risk”). Several areas classified as “very high risk” and “high risk”



were found outside of the original FEMA 100-year floodplain and were found to contain various types of
critical infrastructure previously thought to be safe from flooding due to a 100-year event.

The FEMA 100-year flood maps are limited to the sub-watersheds of greater than one square mile that
FEMA chose to study with limited resources. Other limiting factors are the age of the underlying studies
illustrated by the FEMA maps (often more than two decades old) and their focus on only areas where
development existed or was imminently anticipated. FEMA’s flood mapping is developed using physical
models to perform hydrologic and hydraulic analysis of a statistical rainfall event with a one percent
chance of being equaled or exceeded in any given year (referred to as the 100-year flood). In general
terms, hydrologic analysis is the study of transforming rainfall amounts into quantity of runoff.
Hydraulic analysis takes that quantity of water and uses a physical model to route it through existing
terrain, while considering such factors as topography and vegetative density. This modeling is referred
to as “detailed analysis.” Some areas are studied by “approximate methods.” In general, areas studied
by approximate methods use a simplified hydrologic analysis methodology and route runoff quantity
along best available topography alone.

The susceptibility maps from this study provided a less expensive method of covering all land area
within the region. By using the statistical modeling methodology described in the associated report it
was possible to identify the contribution of flood risk factors within the physically modeled FEMA 100-
year floodplain and apply them to the entire study region to identify areas thought to be susceptible to
flooding. As part of that study an ArcGIS map document file is available for the region’s municipalities’
future planning analysis containing the flood susceptibility, land use, and critical infrastructure datasets.
An important disclaimer about the flood susceptibility map is that it was created for present-day
conditions and is only to be used for planning purposes. It was not intended to replace the FEMA
mapping for regulatory or flood insurance decisions.

Expanded Analysis

During the 2020 RiverCOG Hazard Mitigation Plan Update process, additional resources were provided
to perform an expanded analysis to determine if certain changes in the flood mapping methodology
would yield beneficial results for the final susceptibility mapping product. The expanded analysis
documented here included the following steps:

1. Testing the significance of all flood risk factors to determine which, if any, should not be
included in the final flood susceptibility model;

2. Perform one flood susceptibility analysis for the entire planning region and compare the results
to the original sub-regional (urban, rural, and coastal) analyses;

3. Using higher-resolution elevation (LIDAR) data, assess any resulting changes in the contributions
of all flood risk factors to flood susceptibility and the resulting flood susceptibility model; and

4. Using higher-resolution land cover data, assess any resulting change in the contributions of all
flood risk factors to flood susceptibility and the resulting flood susceptibility model.

The technical results of the extended analysis are discussed below.



1. Testing the Significance of Flood Risk Factors

Previously all flood risk factors were included in the final flood susceptibility equation without
considering whether they are significant or not. In order to explain the definition of significance, one
needs to remember that when creating a flood model based on various flood risk factors, the model is
based on any links that are found between each flood risk factor and locations of flooding. In essence,
an attempt is made to correlate each flood risk factor with flooding in order to be able to predict where
flooding can be expected. Flood risk factors that exhibit an apparently strong link with flooding will end
up having very high (positive) or low (negative) coefficients in the model. The problem is that these
apparent links may not be real; they may just have appeared at random due to the statistics used. For
example, a correlation can almost be found between anything (e.g. taxes and the phase of the moon) if
you search through the data long enough. For this reason, the reality (or significance) of the link
between any flood risk factor and flood susceptibility needs to be estimated.

Significance is measured as the chance (we will refer to this as p) that the links between each flood risk
factor and flooding is not real or essentially zero; such information is provided when performing the
original logistic regression. If we look at the example of taxes and the phase of the moon, suppose that
a very strong link is found in the data, but since there is no logical explanation for this, the significance of
the link is tested and a value of p =0.99 is found. This would mean that there is a 99% chance that the
link is not real or that there is 1% chance that is it real. In order to say that a flood risk factor has a
significant contribution, the value of p must be less than 0.05, which indicates a less than 5% chance
that it does not (or a greater than 95% chance that it does) significantly impact flood susceptibility. The
resulting values of p for all flood risk factors and sub-regions are shown in Table 1.1; any values there
were found to be greater than 0.05 are highlighted in red.

Based on the results in Table 1.1, each flood risk factor for which p was greater than 0.05 has been
eliminated from the appropriate sub-regional flood susceptibility analysis when developing the revised
flood susceptibility map. For instance, the flood susceptibility model that is developed for the coastal
sub-region (Column 1) now only considers the flood risk factors elevation (ELEV), slope (SLOPE),
vegetative density (VEG), distance to water (DIST), soil drainage (SOIL), and surficial materials (GEO);
land curvature (CURV), land cover (LAND), and percent impervious surface (IMP) were found to be
insignificant and therefore were not included. The slightly revised coefficients for each significant flood
risk factor and each sub-region are shown in Table A.1 of the Appendix.

Each revised sub-regional model was then used to construct a new flood susceptibility map for the
entire LCRVR (Fig. 1.1). Due to the fact that the only difference between the current analysis and the
analysis used in the 2017 study is the omission of flood risk factors that were found not to have a
significant impact on flood extent, the current flood susceptibility map is very similar to the 2017 map.
The major improvement is that the methodology used to create the current map is more defendable
and thus the results are more robust.



Table 1.1: The probability (p) that the link identified between each flood risk factor

and flood extent in the coastal, rural, and urban sub-regions is given. Values greater

than 0.05 are highlighted in red.

Factor Coastal Rural Urban \
ELEV 0.00 0.00 0.00
CURV 0.55 0.00 0.00
SLOPE 0.00 0.00 0.00
VEG 0.00 0.00 0.08
LAND 0.08 0.00 0.00
DIST 0.00 0.00 0.00
SOIL 0.00 0.00 0.00
IMP 0.35 0.28 0.09
GEO 0.00 0.00 0.00




72°5%'0"W  72%50"W 7273%'0"W T2°250"W T2MS0MW 72°50"W

41°55'0"N- -41°55'0"N
41°50°0"N- -41°50'0"N
41°45'0"N- ~=41°45°0"N
‘1040'0"N" '41 ’40‘0“"
41°35'0"N- -41°35'0"N
41°30"0"N- -41°30°0"N
41°25'0"N- -41°25'0"N
41°20°0"N-] -41°20'0"N
41°15'0"N- -41°15'0"N

Flood Susceptibility
41°10'0"N- = -41°10'0"N

Very Low Risk
- Low Risk
B iedium Risk
41°5'0"N+ | 41°50"N
B Hich Risk
Very High Risk
T
Pk Open Water 'S Laroonn
72°58'0"W | 72°45'0"W | 72°38'D"W | 72°28'0"W 72°15'0"W 72°5'0"W

Figure 1.1: Flood susceptibility map of the LCRVR using separate flood models for the coastal, rural, and
urban sub-regions. Insignificant flood risk factors as identified for each sub-region in red in Table 1.1 are
omitted from the appropriate sub-region’s flood model. Flood susceptibility is classified as “very low
risk” (0 — 20%), “low risk” (20 — 40%), “medium risk” (40 — 60%), “high risk” (60 — 80%), or “very high
risk” (80 — 100%).



2. Regional vs. Sub-regional Analysis

The second task of this expanded analysis was to look at the effect of developing a flood susceptibility
map based on an analysis of the LCRVR as a whole compared to the method used in the 2017 study,
which was to develop separate flood susceptibility maps for three sub-regions (e.g. urban, coastal, and
rural) within the LCRVR and then combine them to create one regional map. The reasoning for creating
separate sub-regional models was to prevent flood risk factors that have a strong impact, for example,
on flooding in the urban setting of Middletown, from having an influence on rural and coastal portions
of the flood susceptibility map and likewise for the other sub-regions. There was also a desire to
compare the flood risk factors that are most important to consider for an urban vs. rural setting, which
may provide clues on the impact of urbanization on the mechanisms responsible for increased flood risk.
The issue with combining the three sub-regional maps into one map is that unrealistic artifacts appeared
at the boundaries of the sub-regions. Also the range of values displayed throughout the various sub-
regions varied as can be seen in Fig. 1.1 above: the rural sub-region has much more widespread areas of
dark green that indicate “low” risk whereas the coastal and urban sub-regions are more heavily
dominated by bright green areas of “very low” risk; also there is no smooth transition between sub-
regions.

Based on the reasoning above, it was decided to create one flood susceptibility model for the entire
LCRVR and then compare the resulting coefficients for each flood risk factor and the resulting flood
susceptibility maps between the current analysis and the 2017 study results. In order to compare the
results, the first step was to compute the average of the coefficients for each flood risk factor. It should
be noted again, that in the original study each flood risk factor was divided into up to 10 classes or
categories. For instance, elevation was split into 10 classes that were based on all elevation values
throughout the LCRVR; classes were defined so that an equal number of values was included in each
class. Therefore, when creating the flood model each elevation measurement is assigned a number
between 1 to 10 depending on its raw value. Logistic coefficients are then estimated for each class;
therefore, elevation would have ten coefficients, one for each class. These coefficients are then
averaged and compared to the average value from the 2017 study as a percent change. The results of
this comparison are shown in Table 2.1. Significant differences can be observed in the contributions of
each flood risk factor to flooding, particularly regarding the land curvature (CURV), vegetative density
(VEG), and soil drainage (SOIL) flood risk factors. Much of this change is again due to the fact that we
created one model that takes into account the relationships between flooding and the flood risk factors
throughout the entire LCRVR instead of limited the analysis to the smaller sub-regions.

Figure 2.1 compares the original flood susceptibility map from the 2017 study (Fig. 2.1a) and the revised
flood susceptibility map when using the updated coefficients (essentially the updated logistic model)
described above (Fig. 2.1b). The major change observed is that the previously described issue regarding
the lack of smooth transitions between sub-regions (Fig. 2.1a) has been resolved, resulting in a much
more realistic map (Fig. 2.1b). Also, flood susceptibility values in Fig. 2.1b overall seem to be less
throughout the study region with the “very high” risk areas within Middletown and along the coast
reduced in size. This is likely due to the fact that the regional model includes the rural sub-region, which
is much larger than the other sub-regions and was found in 2017 to have substantially lower flood
susceptibility overall compared to the other sub-regions; this will inevitably have an impact on the flood



susceptibility values in what were previously the urban and coastal sub-regions and thus cause a
reduction in the size of areas of “very high” flood risk.

Table 2.1: Differences between the average values of the regional
flood risk factor coefficients computed in the current study and the
sub-regional coefficients computed in the 2017 study.

ELEV 77% -54% 80%
CURV 437% 27% -237%
SLOPE -15% -10% 38%
VEG 98% 118% 104%
LAND -193% 74% 93%
DIST 50% 18% -6%
SOIL 244% 151% 57%
IMP -34% 40% 29%
GEO 69% 63% -15%
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Figure 2.1: Flood susceptibility maps from (a) the original 2017 study using separate flood models for
each sub-region and (b) the current study using one flood model for the entire LCRVR. Flood
susceptibility is classified as “very low risk” (0 — 20%), “low risk” (20 — 40%), “medium risk” (40 — 60%),
“high risk” (60 — 80%), or “very high risk” (80 — 100%).



3. High-Resolution LIDAR Data

Task 3 of the expanded analysis involved incorporating the higher-resolution elevation (LIDAR) data into
the flood susceptibility model and assessing any resulting changes in the contribution of each flood risk
factor to flood susceptibility and the resulting flood susceptibility map. The 2017 flood susceptibility
map utilized a lower-resolution 30-meter Digital Elevation Model (DEM) dataset to estimate the values
of the elevation (ELEV), slope (SLOPE), and land curvature (CURV) flood risk factors at each point (or cell)
throughout the LCRVR. The expanded analysis study tested the effect of using the higher-resolution 1-
meter LIDAR data on the resulting contribution of each flood risk factor to flood susceptibility and on the
revised flood susceptibility map. The specific dataset used was the 1-m Connecticut Statewide LiDAR
DEM with 1.2cm point spacing, which was downloaded from the National Oceanic and Atmospheric
Administration (NOAA), National Ocean Service (NOS, Office for Coastal Management (OCM), website.
After incorporating the higher-resolution data, the updated contributions (or coefficients; shown in
Table A.2 of the Appendix for the entire region (A) and for the coastal (C), rural (R), and urban (U) sub-
regions) for each flood risk factor were averaged for each sub-region (similar to what was done in
Section 2 above) and compared to the results of the 2017 study in terms of percent change (see Table
3.1). It can be seen that the higher resolution data has a substantial impact on almost all flood risk
factors (excluding DIST), with maximum change observed in the coefficients for the CURV and SLOPE
flood risk factors. The reason for these changes stems from the fact that the 1-m LIDAR data used to
extract the ELEV, SLOPE, and CURV flood risk factor values and to estimate the resulting contributions of
all flood risk factors to flood susceptibility is much more accurate than the previous 30-m DEM.

Figure 3.1 shows the resulting flood susceptibility map when using the 1-m LIDAR dataset to estimate
the ELEV, SLOPE, and CURV flood risk factors. Since the current comparison still uses the sub-regional
flood models (as opposed to the single regional model used above in Section 2), the artifact between
sub-regions is still observed, especially between the rural and coastal sub-regions in the southern
portion of the map. Even though the 1-m LIDAR dataset is much more accurate than the previously used
30-m DEM, the resulting flood susceptibility map in Fig. 3.1 is very similar to the original 2017 map (refer
to Fig. 2.1a) except that the extent of areas of “very high” risk (bright red) are slightly reduced, especially
within the vicinity of Middletown and along the coast, and that areas with “very low” risk (bright green)
are more homogeneous.
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Table 3.1: Differences between the average values of the
sub-regional flood risk factor coefficients computed in the
current study using the 1-m LIDAR dataset and the sub-
regional coefficients computed in the 2017 study using the
30-m DEM dataset.

Factor Coastal Rural Urban
ELEV 12% 39% 1%
CURV 131% 111% 91%
IMP 67% 188% 14%
DIST 5% 4% 3%
VEG 107% 28% 85%
LAND 3194% 56% 49%
GEO 122% 10% 17%
SOIL 53% 138% 23%
SLOPE 421% 1217% 432%
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Figure 3.1: Flood susceptibility map using separate logistic models for the coastal, rural, and
urban sub-regions and the higher-resolution 1-m LIDAR data. Flood susceptibility is classified as
“very low risk” (0 — 20%), “low risk” (20 — 40%), “medium risk” (40 — 60%), “high risk” (60 — 80%),
or “very high risk” (80 — 100%).



4. High-Resolution Land Cover Data

The next task involved incorporating higher-resolution land cover data into the flood susceptibility
model and assessing any resulting changes in the contribution of each flood risk factor to flood
susceptibility and the resulting flood susceptibility map. The 2017 flood susceptibility map utilized the
lower-resolution 30-m National Land Cover Dataset (NLCD) to estimate the values of the land cover
(LAND) flood risk factor at each point (or cell) throughout the LCRVR. The current study tested the effect
of using higher-resolution 1-m land cover data on the resulting contribution of each flood risk factor to
flood susceptibility and on the revised flood susceptibility map. The 1-m NOAA Land Cover data is based
on data collected by The NOAA Office for Coastal Management Coastal Change Analysis Program (C-
CAP), which is a contributing member of the Multi-Resolution Land Characteristics consortium; C-CAP
products are included as the coastal expression of land cover within the National Land Cover Database.
The classes within which the data are categorized are slightly different between the original 30-m NLCD
and the 1-m NOAA datasets; the categories of both datasets that are included in the classes used in the
current analysis are listed in Table A.3 of the Appendix. After incorporating the higher-resolution data,
the updated contributions (or coefficients) for each flood risk factor were averaged for each sub-region
(similar to what was done in Section 2 above) and compared to the results of the 2017 study in terms of
percent change (see Table 4.1). It can be seen that the higher resolution data has a substantial impact
on all flood risk factors, with maximum change observed in the coefficients for the LAND flood risk
factor. In fact, the observed changes overall were greater than those observed when using the high-
resolution elevation data in Section 3. The reason for these changes again stems from the fact that the
1-m dataset used to extract the LAND flood risk factor values and to estimate the resulting contributions
of all flood risk factors to flood susceptibility is much more accurate than the previous 30-m dataset.

Figure 4.1 shows the resulting flood susceptibility map when using the 1-m land cover dataset to
estimate the LAND flood risk factor. Since the current comparison again uses the sub-regional flood
models (as opposed to the single regional model used above in Section 2), the artifact between sub-
regions is still observed, especially between the rural and coastal sub-regions in the southern portion of
the map. Even though the 1-m land cover dataset is much more accurate than the previously used 30-m
NLCD, the resulting flood susceptibility map in Fig. 4.1 is similar to the original 2017 map (refer to Fig.
2.1a) except that, similar to what was observed in Section 3, the extent of areas of “very high” risk
(bright red) are slightly reduced, especially within the vicinity of Middletown and along the coast, and
that areas with “very low” risk (bright green) are more homogeneous.
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Table 4.1: Differences between the average values of the sub-regional
flood risk factor coefficients computed in the current study using the 1-
m land cover dataset and the sub-regional coefficients computed in
the 2017 study using land cover data from the 30-m NLCD.

Factor All Coastal Rural Urban \
ELEV 37% 9% 81% 22%

CURV 464% 6649% 149% 61%

IMP 67% 698% 690% 114%

DIST 31% 69% 39% 22%

VEG 102% 72% 92% 164%

LAND 124% 2901% 186% 451%

GEO 32% 186% 129% 29%

SOIL 43% 265% 148% 92%

SLOPE 66% 199% 136% 379%
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Figure 4.1: Flood susceptibility map using separate logistic models for the coastal, rural, and
urban sub-regions and the higher-resolution 1-m NOAA land cover data. Flood susceptibility is
classified as “very low risk” (0 — 20%), “low risk” (20 — 40%), “medium risk” (40 — 60%), “high

risk” (60 — 80%), or “very high risk” (80 — 100%).
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Final Analysis and Overall Conclusions

The final analysis that was performed incorporates all of the changes that were tested in the previous
four sections: 1) omitting flood risk factors found to be insignificant, 2) developing one flood model for
the entire region, and utilizing the high-resolution 3) elevation and 4) land use datasets. The resulting
logistic coefficients for each flood risk factor class are provided in Table 5.1. It was interesting that after
incorporating all the updates mentioned above, all flood risk factors were found to be significant and
thus were retained in the final flood model. The resulting final flood susceptibility map is shown in Fig.
5.1. The major difference when compared to the original flood susceptibility map is that a much larger
percentage of the region is either identified “very low” (bright green) or “very high” (bright red) flood
risk with very limited areas in between. The overall extent of “very high” flood risk has also been
reduced.

The reduction in the size of the area of “very high,” as well as “medium” and “high” flood susceptibility
compared to the original 2017 study, can also be seen in Fig. 5.2. Figure 5.2a compares the FEMA flood
zone (hatched area) with the results of the 2017 study by overlaying the layer of “medium” to “very
high” susceptibility in order to identify “very high” risk areas located outside of the FEMA flood zone;
the opposite is done in the second map of Fig. 5.2a in order to identify areas where the FEMA flood zone
extends outside of the areas identified as “very high” risk in the 2017 study. Figure 5.2b shows the same
comparison for the current study that incorporates the high-resolution data layers and the regional
analysis. It can be seen that the areas of “very high” risk (bright red) lying outside of the FEMA flood
zone (hatched area) are reduced with fewer critical infrastructure being located within these areas.
Also, whereas there was a negligible portion of the FEMA flood zone lying outside of the areas of “very
high” risk in the 2017 study, there are now such areas, although small, located northwest of Middletown
and within Middletown near the river. These results demonstrate that the higher resolution data and
the size of the study area (regional vs. sub-regional) that is analyzed do have an impact on the extent of
the area identified as having a “very high” flood risk and the particular critical infrastructure located
therein.

Based on this extended analysis the flood susceptibility map using the analysis of the entire region,
combined with the higher resolution elevation and land cover data is recommended for future field
verification and planning activities.
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Table 5.1: Regression coefficients for each class of each flood risk factor for regional flood model using
the higher resolution 1-m LIDAR data for the ELEV, CURV, and SLOPE flood risk factors and the higher
resolution 1-m land use data for the LAND flood risk factor.

Logistic Coefficient Factor Logistic Coefficient
ao - 7.66 DIST (m) 0.00 —39.21 -
ELEV (m) -2.65-2.88 - 39.22 - 117.64 -1.33

2.89-20.58 -5.04 117.65 — 235.27 -2.13
20.59 — 39.39 -5.36 235.28 - 352.91 -2.36
39.40 - 55.98 -5.59 352.92 — 470.54 -2.63
55.99 - 74.78 -5.51 470.55 - 588.18 -2.84
74.79 - 92.48 -4.99 588.19 — 745.02 -2.94
92.49 - 109.07 -5.63 745.03 —980.29 -2.49
109.08 — 127.88 -5.14 980.30 — 2352.71 -2.39
127.89 - 152.21 -5.61 >=2352.72 0.56
>=152.22 -6.03 SOIL not rated --
CURV <=-0.66 - excessively drained -0.87
-0.65 - 0.65 -0.51 somewhat excessively -0.52
>=0.66 -0.11 well drained -0.86
SLOPE  0.00-0.00 - moderately well -0.45
0.01-0.35 -0.65 somewhat poorly 0.87
0.36 - 0.69 -0.92 poorly drained 0.25
0.70 - 1.04 -0.87 very poorly drained 0.20
1.05-1.73 -1.18 IMP (%)  0.00-0.00 -
1.74 -2.43 -1.15 0.01-1.96 -0.64
2.44-3.12 -1.02 1.97-471 -0.34
3.13-4.16 -1.26 4.72-10.98 -0.20
4.17-5.89 -1.42 10.99 - 18.82 -0.52
>=5.90 -1.17 18.83 — 28.62 -0.35
VEG (%) 0.00-0.00 -- 28.63 - 38.82 -0.22
0.01-31.73 -0.05 38.83-49.80 -0.37
31.74-54.71 -0.18 49.81-63.92 -0.61
54.72 — 69.66 -0.31 63.93 —100.00 -0.56
69.67 — 79.87 -0.25 GEO thin till -
79.88-85.71 -0.26 sand/ gravel/talus 1.22
85.72 - 87.89 -0.18 fines 2.68
87.90 —88.99 -0.58 floodplain alluvium 3.66
89.00 —89.72 -0.72 swamp deposits 1.62
89.73-93.00 -0.73 thick till -0.47
LAND developed, open space - End Moraine deposits -0.01
impervious -0.13 artificial fill 3.17
unconsolidated shore 0.01 salt/tidal marsh deposits 1.99
bare land -0.17 beach deposits 3.97
mixed forest 0.18
scrub/shrub 0.22
grassland 0.27
pasture/hay -0.05
cultivated land 0.27
wetlands (woody/emer.) 1.00
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Figure 5.1: Flood susceptibility map that results when using one flood model for the entire LCRVR
and that incorporates the higher-resolution 1-m elevation and land cover datasets. Flood
susceptibility is classified as “very low risk” (0 — 20%), “low risk” (20 — 40%), “medium risk” (40 —
60%), “high risk” (60 — 80%), or “very high risk” (80 — 100%).
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Figure 5.2: Comparison between areas identified as “medium” to “very high” flood susceptibility (dark
green to red) and the FEMA Flood Zones (hatched) for (a) the original 2017 study and (b) the current
study. Maps in each figure overlay either the flood susceptibility results on top of the FEMA flood zone or
vice versa. Locations of various critical infrastructure are also shown. Flood susceptibility is classified as
“medium risk” (40 — 60%), “high risk” (60 — 80%), or “very high risk” (80 — 100%).
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Appendix

Table A.1: Logistic coefficients for each class of each flood risk factor for all sub-regions (C = coastal sub-
region; R = rural sub-region; U = urban sub-region). NS indicates that the link between a particular flood
risk factor and flood extent in a particular sub-region was found to be insignificant (refer to Table 1.1).

Logistic

Factor Class Factor Class Logistic

Coefficient
(A/C/R/U)

Coefficient
(A/CIR/U)

ao --

ELEV (m) -2.65-2.84
2.85-20.42
20.43-40.19

40.20 - 56.67

56.68 — 75.35

75.36 — 92.93

92.94 -109.40
109.41 - 128.08
128.09 — 152.25
152.26 — 277.50
Convex (-6.05 — -0.66)
Flat (-0.65 — 0.65)
Concave (0.66 — 6.05)
0.00 - 0.47

0.48 -1.89
1.90-3.31
3.32-4.73

4.74 - 6.62

6.63 -8.52
8.53-10.88

10.89 - 14.20
14.21-19.40

19.41 -120.72

VEG (%) 0.00-0.00

0.01 -32.00
32.01-55.00

55.01 -70.00
70.01-80.00

80.01 -86.00

86.01 —88.00

88.01 -89.00

89.01 -90.00
90.01-93.00
developed, open space
dev., low intensity
dev., med.-high intensity
barren (rock/sand/clay)
forest

shrub/scrub
grassland/herbaceous
pasture/hay

cultivated crops
wetlands (woody/emer.)

CURV

SLOPE

LAND

4.71/4.75/20.02
afee]--
-4.08/-2.09/-15.08
-20.45/-1.65/-15.93
-18.83/-1.58/-16.45
--/-1.36/-16.56
--/-1.50/-16.77
--/-2.18/-17.39
--1-2.46/-18.42
--/-2.78/-17.88
--/-3.60/-18.15
aefee]--
NS/0.08/-0.41
NS/1.82/1.06
aefee-
-0.20/-0.04/0.03
-0.01/0.09/-0.29
-0.33/-0.53/-0.60
-0.86/-0.51/-0.90
-1.15/-0.84/-1.12
-0.79/-0.73/-1.11
-0.91/-1.31/-2.28
-1.36/-1.07/-1.83
-0.74/-1.92/-2.07
eefee-
-0.25/0.14/NS
-0.37/-0.29/NS
0.02/0.27/INS
-1.08/0.44/NS
-0.36/0.49/NS
-1.58/0.35/NS
-0.95/-0.37/NS
-1.37/-0.19/NS
-1.73/-0.33/NS
efee]--
NS/-0.08/-0.48
NS/-0.07/-0.91
NS/-1.09/-16.60
NS/-0.40/-0.46
NS/-1.43/-0.84
NS/-0.57/-0.56
NS/-0.98/-0.29
NS/-0.20/-0.85
NS/0.61/0.41

DIST (m)

SOIL

IMP (%)

GEO

0.00-39.21

39.22 - 117.64
117.65 — 196.06
196.07 — 274.48
274.49 — 392.12
392.13 - 509.75
509.76 — 627.39
627.40 — 784.24
784.25 -1,019.51
1,019.52 - 2,352.71
not rated
excessively drained
somewhat excessively
well drained
moderately well
somewhat poorly
poorly drained

very poorly drained
0.00-0.00
0.01-1.96
1.97-4.70
4.71-10.98

10.99 - 18.82

18.83 — 28.62
28.63 — 38.82
38.83-49.80
49.81 -63.92
63.93 —99.61

thin till

sand/ gravel/talus
fines

floodplain alluvium
swamp deposits
thick till

End Moraine deposits
artificial fill
salt/tidal marsh deposits
beach deposits

o]l
-1.22/-2.14/-1.58
-2.06/-3.29/-2.63
-2.96/-3.61/-2.59
-3.04/-3.96/-3.18
-4.61/-4.72/-3.50
-4.45/-4.99/-3.80
-5.56/-4.85/-3.99

-19.64/-4.55/-3.83
-16.64/-3.91/-2.65
eefee=
0.17/0.03/-1.96
0.26/-0.63/-1.37
0.25/-0.04/-1.23
0.44/0.62/-1.11
--/2.51/0.63
1.44/1.39/-0.33
1.07/0.95/1.02

o]

NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
NS/NS/NS
o]
0.90/0.88/0.80
--/1.79/1.03
16.56/3.05/2.89
-0.12/1.30/1.47
-0.68/-1.99/-0.73
0.10/-1.79/--
17.50/14.83/1.93
1.37/13.53/--
2.56/--/--
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Table A.2: Regression coefficients for each flood risk factor class and each sub-region (C = coastal sub-
region; R = rural sub-region; U = urban sub-region) using the higher resolution 1-m LIDAR data for the
ELEV, CURV, and SLOPE flood risk factors.

Factor Class Logistic Factor Class Logistic
Coefficient Coefficient
(C/IR/U) (C/IRIV)
ao - 5.20/5.35/19.07 DIST (m) 0.00-39.21 -/~
ELEV (m) -2.65-2.84 -f--/-- 39.22 -117.64 -1.06/-2.08/-1.72
2.85-20.42 -5.20/-2.93/-14.80 117.65 —196.06 -1.84/-3.23/-2.63
20.43 - 40.19 -21.27/-2.53/-15.64 196.07 — 274.48 -2.55/-3.58/-2.66
40.20 - 56.67 -20.19/-2.38/-16.13 274.49 —392.12 -2.75/-3.82/-3.33
56.68 — 75.35 --/-2.28/-16.34 392.13 - 509.75 -4.44/-4.54/-3.64
75.36 — 92.93 --/-2.33/-16.52 509.76 — 627.39 -4.09/-4.80/-3.92
92.94 - 109.40 --/-3.03/-17.29 627.40 — 784.24 -5.57/-4.62/-4.17
109.41 - 128.08 --/-3.32/-17.85 784.25 -1,019.51 -19.24/-4.38/-3.85
128.09 — 152.25 --/-3.69/-17.42 1,019.52 — 2,352.71 -15.91/-3.76/-2.75
152.26 — 277.50 --/-4.38/-18.29 SOIL not rated -f--[--/--
CURV Convex (-6.05 —-0.66)  --/--/-- excessively drained -0.23/-0.09/-2.11
Flat (-0.65 — 0.65) -0.06/0.20/-0.15 somewhat excessively -0.06/-0.71/-1.31
Concave (0.66 — 6.05) 0.14/-0.00/-0.10 well drained -0.00/-0.18/-1.44
SLOPE  0.00-0.47 -f--/-- moderately well 0.04/0.62/-1.26
0.48 -1.89 -0.06/-0.37/-0.10 somewhat poorly --/2.54/0.60
1.90-3.31 0.07/-0.27/-0.25 poorly drained 1.28/1.47/-0.40
3.32-4.73 -0.47/-0.20/-0.49 very poorly drained 0.09/1.01/0.63
4.74 - 6.62 0.33/-0.18/-0.13 IMP (%)  0.00-0.00 -f--[--/--
6.63 —8.52 0.46/-0.76/0.55 0.01-1.96 -0.51/-1.56/-0.25
8.53 -10.88 -2.98/0.08/-0.19 1.97-4.70 -0.01/-0.31/-0.25
10.89 - 14.20 -17.93/0.05/-2.16 4.71-10.98 -0.05/-0.14/-0.24
14.21 -19.40 --/-13.95/17.56 10.99 - 18.82 -0.29/-0.90/-0.32
19.41-120.72 -/--[-17.71 18.83 - 28.62 -0.51/-0.30/-0.05
VEG (%) 0.00-0.00 -/~ 28.63 — 38.82 -0.31/-0.03/-0.44
0.01-32.00 -0.16/0.26/0.04 38.83 -49.80 -0.08/0.09/-0.54
32.01-55.00 -0.22/-0.17/0.21 49.81 - 63.92 0.04/-1.17/-1.19
55.01 - 70.00 -0.20/0.30/0.11 63.93 - 99.61 -0.58/-0.28/-0.62
70.01-80.00 -1.45/0.55/0.48 GEO thin till -f--/--
80.01 - 86.00 -0.68/0.62/0.47 sand/ gravel/talus 1.08/1.05/1.02
86.01 — 88.00 -1.73/0.41/0.56 fines --/1.94/1.35
88.01 - 89.00 -1.07/-0.20/0.26 floodplain alluvium 16.08/3.27/3.27
89.01 —90.00 -1.66/-0.09/-1.17 swamp deposits 0.74/1.49/1.71
90.01-93.00 -0.18/-0.18/-0.68 thick till -0.22/-1.96/-0.72
LAND developed, open space ---I-- End Moraine deposits 0.01/-2.28/--
dev., low intensity 0.27/0.01/-0.19 artificial fill 17.28/15.02/1.83
dev., med.-high intensity 0.12/0.07/-0.24 salt/tidal marsh deposits 1.33/13.03/--
barren (rock/sand/clay)  1.28/-1.57/-17.40 beach deposits 2.61/--/--
forest 0.13/-0.75/-1.00
shrub/scrub -1.38/-1.66/-0.92
grassland/herbaceous -0.34/-0.97/-0.87
pasture/hay 0.30/-1.15/-0.51
cultivated crops 1.58/-0.34/-1.28
wetlands (woody/emer.)  0.37/0.46/0.07
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Table A.3: The land use categories used in each class of the land use flood risk factor are provided for the
1-m NOAA land use dataset (Columns 1 and 2) and the 30-m NLCD land use dataset (Columns 4 and 5).
The classes used in the current analysis that are associated with each category are listed in Column 3.

NOAA Land  Category NLCD Land Category

Use Code Use Code

5 developed open space 1 21 developed open space
N/A N/A 2 22 developed, low intensity
2 impervious 3 23/24 developed, medium/high intensity
19 unconsolidated shore 4 31 barren land

20 bare Land 4 31 barren land

11 mixed forest 5 41 forest

12 scrub/shrub 6 52 scrub/shrub

8 grassland 7 71 grassland

7 pasture/hay 8 81 pasture/hay

6 cultivated land 9 82 cultivated crops

13 palustrine forested wetland 10 90/95 wetland

14 palustrine scrub/shrub wetland 10 90/95 wetland

15 palustrine emergent wetland 10 90/95 wetland

17 estuarine scrub/shrub wetland 10 90/95 wetland

18 estuarine emergent wetland 10 90/95 wetland

21 open water null 11 open water

22 palustrine aquatic bed null 11 open water
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Executive Summary

A summary of the data, methodology, results, and conclusions related to the flood susceptibility analysis
of the Lower Connecticut River Valley Region (LCRVR) can be found in Giovannettone et al. (2018).

Regarding climatic factors affecting the LCRVR, an analysis looking at the major climatic mechanisms
linked to rainfall in the region was performed through a simple correlation analysis between long-term
total precipitation and long-term averages of nearly 40 climate indices. It was found that by
incorporating a time difference, or lag time, between the period over which rainfall is totaled and the
corresponding period over which climate indices are averaged, 12 and 48 months maximized the
predictive skill of the correlation. The reason for incorporating a lag time is based on the assumption
that the effects of a particular climate mechanism on rainfall do not occur immediately; there is some
delay before the corresponding impact on rainfall manifests itself. The 12-month lag time revealed a
strong and significant correlation with El Nifio, while the 48-month lag time revealed a strong and
significant correlation with the Caribbean SST (sea-surface temperature) index. The correlations at the
48-month lag time were used to create a statistical model to predict future 48-month rainfall totals;
predictions were shown to be relatively accurate when compared to historic observations. This model
provides a long-term window into the future and can be used to predict the future onset and
persistence of extended periods of high rainfall and drought.

Local- and regional-scale statistical analyses were performed for the city of Hartford and for a region
encompassing several Mid-Atlantic and Northeastern states to detect changes in historical rainfall
statistics over and near the LCRVR. Tests were performed on trends (i) in the Annual Maximum Series
(AMS) of 24-hour rainfall and (ii) Peaks-Over-Threshold (POT). Slight linear trends were found at
Hartford but were not significant at the 95% and 90% confidence levels. On a regional level, 20% of rain
gauges, including gauges in northwestern Connecticut, experienced statistically significant increases in
AMS over the period of record, while 32% showed statistically positive trends in POT, which indicates
significant increase in heavy rainfall outside of the LCRVR. The change in the 70th and 98th percentiles
of rainy day rainfall was also investigated to determine if the change in light/moderate rainfall is
consistent with changes in heavier rainfall. Comparing two periods (1955 — 1985 and 1986 — 2016)
revealed that even though there are significant increases in heavy rainfall on a regional basis, there are
very few locations that experienced a significant change in light/moderate rainfall, suggesting a
disproportionate effect of climate change on heavier events as opposed to an overall wetter climate. In
contrast, as the local-scale analysis revealed no significant increase in heavy rainfall intensity and
frequency, it is likely that the LCRVR has “beat the odds” by not experiencing an increase in heavy
rainfall activity. It is also possible that there may be some other effect, perhaps from Long Island Sound,
that has caused differences in rainfall trends in the region. This cannot be said for sure without
additional analysis.

An analysis of future rainfall projections was then conducted to determine how heavy rainfall will
change over the LCRVR in the mid- and long-term future using data from the Intergovernmental Panel
on Climate Change’s (IPCC’s) CMIP5 modeling experiments. The high emission Representative
Concentration Pathway (RCP) 8.5 (W/m2) scenario was used to provide an upper bound on expected
changes. All raw model data used for future projections were bias-corrected by comparing model
results from a historical period (1950 — 2005) to observations at the National Oceanographic and
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Atmospheric Administration (NOAA) Global Historical Climatology Network (GHCN) rain gauge (ID#
GHCND:USW00014740), at Hartford Bradley International Airport.

Projections in the future Precipitation-Frequency (P-F) curve at Hartford were then investigated. It was
found that projected mid-term (2045) and long-term (2075) P-F curves show increases across the full
range of frequencies, with higher percentage changes occurring for the more frequent events. Results
indicate that today’s 100-year 24-hour rainfall event will become a ~53-year event in 2045 and a ~45-
year event in 2075, whereas more drastic changes are seen for more frequent events. These and prior
results demonstrate the importance of determining which present-day recurrence intervals (e.g. 100-
year) are important for land use and recovery planning, hazard mitigation, design standards and/or
flood warning plans and then building socioeconomic models to show how a more frequent occurrence
of such events will impact response and/or recovery costs. This analysis is also useful for informing the
possible changes in the shorter-duration flash flood risk, which is more driven by precipitation compared
to riverine flooding (especially on the Connecticut River). Although the latter is also driven by rain and
snow, it is also driven strongly by additional factors such as upstream flow, land cover, impervious area
and ice jams and dam releases.

A series of three outreach workshops for community officials, an online survey of stakeholders, and a
review of planning and regulatory documents throughout the region were conducted. The workshops
were used to review methodology and present results, and most importantly, to discuss the practical
applications of the susceptibility mapping for community planning and operations, with a focus on
resiliency. Practical applications range from quantitative analysis of at risk property and infrastructure,
for planning, to modifications of design standards for new development and post disaster recovery.

1. Introduction and Literature Review

The Introduction and Literature Review pertaining to the flood susceptibility analysis can be found in
Giovannettone et al. (2018).

2. Data and Method

Flood Susceptibility

A description of the data and methodology used to perform the flood susceptibility analysis can be
found in Giovannettone et al. (2018).

Analysis of Climatic Factors

In addition to developing flood susceptibility maps, the impacts of climate variability and climate change
on heavy precipitation in the LCRVR were studied. The impact of natural climate variability, which can
have significant influence on year to year changes in heavy precipitation, was analyzed through a
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correlation analysis using large-scale Hydro-Climate Indices (HCI’s). HCI’s characterize repeated
relationships between various climate regimes on a global scale and a host of associated hydrologic
responses. The effects of these climate regimes on regional hydrologic flow and reservoir operations
have been heavily researched, and the HCI's were developed to provide a quantitative point of
reference for these relationships. The relationship between the climate and water supply has quickly
evolved into a matter of national interest and concern during the past decade as periods of deep
drought gripped several portions of the country creating regional water supply crises. Meanwhile, the
impact of climate change was assessed from two perspectives: a historical analysis using observed, long-
record rain gauge data, and an analysis of future projections of daily precipitation from relatively high
resolution downscaled atmospheric models forced with increasing greenhouse gas emissions. Below, we
describe the data used in each analysis in more detail.

Climate Variability

In addition to trends in a changing climate, there also exist various mechanisms of low-frequency
climate variability that can result in significant changes in weather over time. The current study
attempts to identify the climate mechanisms that affect precipitation in the LCRVR and surrounding
region using various hydro-climate indices (HCI’s), including those given in Table 2-3. The method used
to accomplish this is referred to as “long-window” correlation analysis and entails utilizing a long-
duration (60-month) moving average of monthly index values and precipitation to smooth out much of
the noise in both time series. It was found that by incorporating a time difference, or lag time, between
the period over which rainfall is totaled and the corresponding period over which climate indices are
averaged, the predictive skill of the correlation could be optimized. The reason for incorporating a lag
time is based on the assumption that the effects of a particular climate mechanism on rainfall do not
occur immediately; there is some delay before the corresponding impact on rainfall manifests itself.
Various lag times between the two datasets were analyzed, and it was found that lag times near 12 and
48 months resulted in the best correlations; further analyses were therefore limited to these two lag
times. Strong correlations provide a type of predictive mechanism by which future annual or multi-
annual precipitation can be estimated. Longer lead times also allow a window into the future from
which the onset and/or persistence of a long-term extreme event can be identified with substantial lead
time.

Precipitation data were obtained from the Global Historical Climatology Network (GHCN; see Menne et
al., 2012) for locations throughout the States of Connecticut, Massachusetts, and Rhode Island, while
the National Oceanographic and Atmospheric Administration (NOAA) contains a compilation of the
climate index data used here (NOAA 2016). Precipitation data were composited into 60-month rainfall
totals, while climate index data were averaged over 60-month periods that lagged the rainfall periods by
12 and 48 months for the short- and long-term analyses, respectively.

The current analysis required the use of a frequency analysis software referred to as the HydroMetriks —
Frequency Intensity Tool (Hydro-FIT), which was developed, tested, and validated, by HydroMetriks, Ltd.
Hydro-FIT allows the identification of any of nearly 40 climate indices that correlate well with total
precipitation over a user-specified period, which is defined by a beginning month, duration, and lag

Table 2-3: Abbreviations and names of global climate
indices analyzed in the current study.
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Index Index Name
Abbreviation
SOl Southern Oscillation Index
ONI Oceanic Nifio Index
EPI ENSO Precipitation Index
TNI Trans-Nifio Index
MEI Multivariate ENSO Index
NAO North Atlantic Oscillation
AMO Atlantic Multidecadal Oscillation
AMM Atlantic Meridional Mode
CAR Caribbean SST Index
PDO Pacific Decadal Oscillation
NOI Northern Oscillation Index
WP Western Pacific pattern
PNA Pacific/North American pattern
AO Arctic Oscillation
EAWR Eastern Asia/Western Russia Index
CIP Central Indian Precipitation index
MJO Madden-Julian Oscillation

time. A previous version of Hydro-FIT had been used to perform such analyses for rainfall in South
America and for hurricane genesis in the Atlantic Ocean (Giovannettone, 2017). The strength of each
correlation was measured using Pearson’s correlation coefficient, while the significance or the likelihood
that a given correlation coefficient will occur while assuming there is no relationship in the population (r
= 0.0) is measured using the statistical t-value and critical values from the Student’s t Distribution for
two-tailed distributions:

t=r ("—_2) (3)

1-12

where t represents the statistical t-value, r is the Pearson correlation coefficient, and n is the number of
data values (n — 2 = degrees of freedom). If the computed t-value is greater than a critical value, then
the null hypothesis can be rejected and the correlation is significant at the selected confidence level.

Historical Precipitation Analysis

Daily rainfall records from the Global Historical Climatology Network (GHCN) (see Menne et al., 2012)
were accessed. We focused on a region that has similar heavy precipitation statistics as the LCRVR,
hereafter termed the LCRVR “climate region”. The LCRVR “climate region” was subjectively determined
by analyzing precipitation-frequency data (e.g. Appendix A) and noting that the LCRVR behaves similarly
to other rain gauges roughly within 250 km of the Atlantic Ocean. In all, gauges were selected based on
the following criteria:

Roughly 250 km (155 miles) from Atlantic Ocean coastline,
Years with more than 9 days of missing data were excluded,
The last qualifying year was 2007 or later (see Appendix B),
At least 60 qualifying years.
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Quantitative evidence of significant non-stationarity, which suggests that climate and flood risk are
being altered through substantial anthropogenic changes, in heavy precipitation statistics was assessed
using three methods, trends in Annual Maximum Series (AMS), trends in Peaks over Threshold (POT) and
changes in the daily rainfall distribution, from 1955-1985 to 1986-2016 at various percentiles. The AMS
consists of a times series of annual maximum 24-hour precipitation totals, while the POT consists of a
time series of the total number of days annually experiencing total precipitation over a pre-determined
threshold.

Future Projections

The projected impact of climate change on rainfall intensity for medium (2045) and longer term (2075)
planning purposes was estimated. This analysis is especially useful for informing the possible changes in
the shorter-duration flash flood risk, which is more driven by precipitation than riverine flooding
typically is (especially on the Connecticut River). Although the latter is also driven by precipitation, it is
also driven strongly by additional factors such as upstream flow as well as land cover and impervious
area.

The most comprehensive and commonly used source of climate change projections is organized by the
Intergovernmental Panel on Climate Change (IPCC). We used data originating from IPCC’s 5" Assessment
Report (AR5), which is the latest available report as of 2017. The findings in AR5 are based on the
simulation of many Global Climate Models (GCMs) from institutions across the world. While GCMs are
adequate for studying continental and global-scale changes in climate, computational limitations
constrain their horizontal resolution to be inadequate for the local scale analysis such as the one here.
Thus, some manner of “downscaling”, or using larger-scale variables to inform smaller-scale conditions,
is required. A comprehensive dataset of downscaled Coupled Model Inter-comparison Project Phase 5
(CMIP5) output was developed in 2014 by a joint effort of several federal, academic, and commercial
partners (Brekke et al. 2013). Although we considered the use of this data, we ultimately decided
against using it because it strongly underestimated daily heavy rainfall statistics over the LCRVR.

Instead, results from a recent high-resolution downscaling effort called the North American Coordinated
Regional Climate Downscaling Experiment (NA-CORDEX) were used. The NA-CORDEX was designed by
taking the output of the relatively coarse GCMs belonging to CMIP5 and using these as boundary
conditions to force much higher resolution atmospheric models centered on North America. Although
many NA-CORDEX simulations were available, the analysis was restricted to those with the highest
horizontal resolution of 11 km (7 miles). All selected simulations were forced by the Intergovernmental
Panel on Climate Change’s (IPCC’s) CMIP5 modeling experiments high emission Representative
Concentration Pathway (RCP) 8.5 (W/m?) scenario boundary conditions. The focus on just the high
emission scenario was done for two reasons: (i) to provide for an estimate of an upper bound to the
impact of climate change on heavy precipitation (because previous studies have shown a quasi-linear
response of heavy precipitation to scenario in the LCRVR), and (ii) to allow for the investigation of
multiple model simulations that would otherwise not be possible if multiple scenarios were chosen.

Table A-1 in Appendix A shows the four model simulations that were analyzed. A fifth simulation, in
which the RegCM4 was forced with the MPI-ESM-LR GCM, was available but not used because it had
incomplete data.
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3. Results

Flood Susceptibility

The overall results of the logistic analysis for each sub-region within the AQOI are given in Giovannettone
et al. (2018). In summary, it was found that ‘elevation’ and ‘distance to water’ have the most influence
on flood susceptibility in the urban and coastal sub-regions, whereas ‘elevation’ has substantially less
influence within the rural sub-region with ‘distance to water’ and ‘surficial materials’ having the greater
influence. It was also found that ‘surficial materials’ has a strong influence in the coastal and rural sub-
regions, whereas it has little influence in the urban sub-region, while ‘land cover’ has the opposite trend.
Finally, it was observed that the urbanization in the sub-region including and surrounding the City of
Middletown has resulted in a significant increase (greater than 200 percent) in the contribution of ‘land
cover’ to the flood susceptibility of the area.

There were several areas identified as ‘very high’ and ‘high’ risk outside of the FEMA map, which
includes various types of critical infrastructure (Giovannettone et al., 2018). When comparing the
susceptibility mapping to the FEMA 100-year flood maps, it is important to understand key distinctions
between the two. The FEMA 100-year flood maps are limited to the sub-watersheds of greater than one
square mile that FEMA chose to study with limited resources. Other limiting factors are the age of the
underlying studies illustrated by the FEMA maps (often more than two decades old) and their focus on
only areas where development existed or was imminently anticipated. FEMA’s flood mapping is
developed using physical models to perform hydrologic and hydraulic analysis of a statistical rainfall
event with a one percent chance of being equaled or exceeded in any given year (referred to as the 100-
year flood). In general terms, hydrologic analysis is the study of transforming rainfall amount into
guantity of runoff. Hydraulic analysis takes that quantity of water and uses a physical model to route it
through existing terrain, while considering such factors as topography and vegetative density. This
modeling is referred to as “detailed analysis.” Some areas are studied by “approximate methods.” In
general, areas studied by approximate methods use a simplified hydrologic analysis methodology and
route runoff quantity through best available topography alone.

The susceptibility maps from this study provide a less expensive method of covering all land area within
the region. By using the statistical modeling methodology described in this report it was possible to
identify the contribution of flood factors within the physically modeled FEMA 100-year floodplain and
apply them to the entire study region to identify areas thought to be vulnerable to flooding. One
important disclaimer about the flood susceptibility map is that it was created for present-day conditions
and is only to be used for planning purposes. It is not intended to replace the FEMA mapping for
regulatory or flood insurance decisions.

The scale of the flood susceptibility map and data are most appropriately used at the regional scale.
However, use of the data at the municipal scale should allow local officials to examine areas of concern
for planning purposes. A GIS tool, which accompanies this report, was developed to enable any location
within the region to be looked at in more detail. As more accurate input datasets (e.g. higher resolution
LiDAR data and imagery) become available, they can be easily incorporated into an updated flood
susceptibility analysis as well as a revised GIS tool. Higher resolution input datasets also allow smaller
areas to be analyzed in more detail if desired (e.g. the City of Middletown, which is dominated by an
area of ‘very high’ flood susceptibility in the northern portion of the AOl in Fig. 3-3).
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Climate Variability

An idea of the climatic mechanisms that may contribute to precipitation and flooding in the region
surrounding and including the LCRVR can be obtained from the results of the climate variability analysis
shown in Fig. 3-4.

It can be observed in Fig. 3-4 that there are a few dominant hydro-climate indices that correlate with
precipitation throughout the State of Connecticut and the surrounding region for both the 12-month
and 48-month lead times, which include indices related to the El Nifio/Southern Oscillation (ENSO), the
Madden-Julian Oscillation (MJO), and the Caribbean SST (sea-surface temperature) Index (CAR), which is
a time series of SST anomalies averaged over the Caribbean Sea. Within the LCRVR itself, ENSO has the
highest correlation with precipitation at the 12-month lead time (Fig. 3-4a) using the beginning months
given in Table 3-1, which contrasts with other sites within the State of Connecticut that correlate best
with the MJO. The strength of these correlations is between R = 0.60 to 0.79 (r? = 0.36 to 0.62), which is
strong enough to make qualitative predictions concerning whether the following 12 months will
experience higher- or lower-than-normal precipitation, but was found not to be sufficient to make
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Figure 3-4: Results of hydro-climate index analyses at several
locations throughout the states of Connecticut, Rhode Island, and
Massachusetts using lag times of (a) 12 months and (b) 48 months.
The color and size of the circles represent the index and correlation
strength, respectively.
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Table 3-1: Strong correlations between 60-month average
climate index values and 60-month total precipitation were
identified for Middletown and Cockaponset State Forest using
the climate indices given in Column 3 and beginning months and
lead times in Columns 2 and 4, respectively.
Precipitation Index Lead Time
Beginning (months)
Month

Middletown, CT January ENSO

Cockaponset, CT July ENSO 12
Middletown, CT January CAR 48
Cockaponset, CT January CAR 48

guantitative predictions of future rainfall. To perform a complete statistical analysis of each correlation,
the significance was also estimated so that the null hypothesis that there is no relationship in the data
can be rejected. The results for the Student’s t test are given in the column labeled t/t.: in Table 3-2.
The first value represents the t-value computed for each site using the corresponding correlation
coefficient (r) and number of data points (n). The second value represents the critical value from the
Student’s t distribution at the 0.01% confidence level. The fact that the t-value does not exceed the
critical value at Middletown means that the null hypothesis cannot be rejected at the 0.01% confidence
level, but it was found that the t-value exceeds the critical value at the 0.05% confidence level (not
shown). The t-value for Cockaponset does exceed the critical value by a small amount, which means
that the null hypothesis can be rejected at the 0.01% confidence level.

Precipitation within the LCRVR was found to correlate strongest with the CAR at a 48-month lead time
(Fig. 3-4b) using the beginning months given in Table 3-1, which again contrasts with other locations in
the state. In this case, the strength of the correlations at Middletown and Cockaponset are between r =
0.80 and 0.99. The results for the Student’s t test are given in Rows 3 and 4 of Table 3-2. The fact that
the t-value exceeds the critical value at both locations by a substantial amount means that the null
hypothesis can be rejected at the 0.01% confidence level in both cases.

Due to the high strength and significance of the correlations identified at a lag time of 48 months,
predictions of 48-month rainfall using the respective linear relationships with CAR are made at
Middletown and Cockaponset State Forest and compared to observations in Figs. 3-5a and b,
respectively; model parameters are given in Table 3-2 for both the 12-month and 48 month correlations.
Predictions closely match observations for almost all years where sufficient rainfall data were available
except for a few short periods. These results demonstrate that, using only one variable, long-term total
precipitation can be predicted with good accuracy, which can be extrapolated to being able to predict
long-term changes in precipitation accurately with sufficient lead time. For example, the onset and end
of a drought or an extended period of high rainfall are capable of being detected with a 48-month lead
time, thus providing a method by which to estimate persistence long in advance.
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Table 3-2: Linear regressions were developed for Middletown and Cockaponset State Forest using
the climate indices, beginning months, and lead times given in Table 3-1. Columns 3 and 4 give
the slope and intercept of the regressions, respectively, while Columns 5 -7 give Pearson’s
correlation coefficients (r), number of data points (n), and ratio of t-values to the critical value from
the Student’s t distribution at the 0.01% confidence level for a two-tailed distribution.

Lead Time Slope (m) Intercept
(months)

Middletown, CT 12 -76.75 243.49 0.65 25 4.10/4.69
Cockaponset, CT 12 40.82 241.91 0.74 23 5.04/4.78
Middletown, CT 48 -276.54 241.81 0.81 22 6.18/4.84
Cockaponset, CT 48 -162.10 233.62 0.87 18 7.06/5.13
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Figure 3-5: Time series of projected (line) vs. observed (circles) 48-
month total precipitation at (a) Cockaponset State Forest and (b)
Middletown.
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Climate Change

Historical Analysis

A local- and regional-scale statistical analyses to detect changes in historical rainfall statistics over the
LCRVR was performed. For the local-scale, the Hartford-Bradley International Airport rain gauge was
selected, from the Global Historical Climatology Network (id: USW00014740). This gauge had a nearly-
complete record of daily data from 1949 — present. Heavy precipitation statistics for the
Hartford/Middletown area are shown in Appendix B. The magnitude of the 100-year 24-hour event is
about 8.2 inches (Appendix B, Fig. B-1). Meanwhile, there is a distinct seasonality of heavy rainfall
occurrence, with highest chances in the late summer and fall (Appendix B, Fig. B-2). For the regional-
scale analysis, we selected all long-record rain gauges within about 250 km of the Atlantic Ocean over
the Mid-Atlantic and Northeastern states. This region experiences similar heavy rainfall statistics and
thus can be considered a more general proxy for trends in the LCRVR's climate.

For the local and regional-scale analyses, we performed tests on trends (i) in the Annual Maximum
Series (AMS) of 24-hour rainfall and (ii) Peaks-Over-Threshold (POT), where a threshold of 1.25 inches
per day was used. For the regional analysis only, we also investigated the change in the 70*" and 98"
percentiles of rainy day rainfall. This allowed us to determine if the change in light to moderate rainfall
amounts was consistent with changes in heavy rainfall days, respectively.

Local-scale

Figure 3-6 shows the Annual Maximum Series (AMS) of daily rainfall at the Hartford gauge, which ranges
from about 1.5 inches to over 7.0 inches. A linear trend test was applied to this time series and revealed
a weak positive trend, but the trend was not significant at the 95% and 90% significance levels. Due to
the presence of isolated, very high amounts such as in 1955, 1982 and 1999, we also performed a
Spearman correlation (less sensitive to outliers) between year and AMS and again found the correlation
to be insignificant at the 90% and 95% confidence levels.

(L

Figure 3-6: Annual Maximum Series of daily rainfall at Hartford Airport over the 1949-2016 period. A linear
trend is shown for reference, but this trend was NOT significant at the 95% confidence level.
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Figure 3-7: As in Fig. 3-6, except for annual Peaks-Over-Threshold using 1.25 inches per day as the
threshold. The trend line was NOT found to be significant at the 95% confidence level and is shown for
reference only.

Because AMS time series can have significant year-to-year variability that may mask longer-term trends,
we also investigated the trend in POT with a threshold of 1.25 inches per day. The result, shown in Fig.
3-7, shows a range of values from 2 to 15 days per year, though a linear trend was once again found to
not be significant at the 90% and 95% confidence levels.

Thus, our conclusion from the local-scale analysis was that there has not been a significant change in
heavy rainfall statistics using the Hartford Bradley Airport gauge, which serves as a good proxy for the
LCRVR. A regional-scale analysis was then performed to determine if the local-scale result can be
corroborated when using other nearby rain gauges.

Regional-scale

The 3™ National Climate Assessment (NCA3; Melillo et al. 2014) has documented a substantial increase
in heavy rainfall events across the Northeast United States. However, that analysis aggregated the
Northeast US into a single region, which could have mixed together sub-regional differences (e.g. we did
not find any increases in heavy rainfall at Hartford). Here, we perform a similar analysis as NCA3 but
investigate trends in heavy rainfall frequency and intensity on a gauge-specific level for gauges in close
proximity to the LCRVR. Because heavy precipitation is relatively rare and a single gauge could miss
showing a trend due to chance, we include in the analysis gauges across the Northeast and Mid-Atlantic
US, roughly within 250 km of the Atlantic Ocean. We chose this region because the heavy rainfall
statistics are roughly the same within this region. This can be deduced by looking at the 100-year 24-
hour rainfall estimate from NOAA Atlas 14 (Fig. 3-8) — note that the contours roughly parallel the
coastline.

Gauges belonging to the Daily Global Historical Climatology Network (GHCN; Menne et al. 2012) were
used in this analysis. A gauge must have at least 60 years of data to qualify, where a year is counted as
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Figure 3-8: 100-year, 24-hour rainfall across the eastern United States (adapted from
NOAA Atlas 14; see Perica et al, 2015 for details).

qualifying if it had less than 10 missing days of data. A total of 179 qualifying gauges were found (using
data through 2016), and trends in the AMS and POT (exceeding 1.25 inches per day), as well as changes
in the distribution, were determined in a gauge-by-gauge manner.

Figure 3-9 shows the trends in AMS of 24-hour rainfall for data through 2005 and 2016. The former is
shown for comparison to highlight the drastic changes that have occurred over only the past 10 years.
Looking at the right panel in Fig. 3-9, it is seen that out of 179 qualifying gauges, 36 (20%) show
statistically significant increases in the AMS. By pure chance, we would only expect 10% (or 18 gauges)
to show a trend (both positive and negative). Whereas, it is seen that there are no gauges that show
significant decreases in AMS, providing substantial evidence that large-scale AMS trends are positive
in the region. Note that the Hartford gauge does not show an increase, but gauges in northwest
Connecticut do show increases.

Figure 3-10 investigates regional trends in a different manner by considering trends in the POT
(threshold: 1.25 inches per day). Similar results are observed as in Fig. 3-9, but now 57 (32%) of the
gauges show statistically significant positive trends, while only two gauges show significant decreases.
Figure 3-10 also shows that most of the gauges with significant positive trends are located in the
northeast United States, with less significant results farther south. To some degree, Fig. 3-10 provides
more robust evidence of increases in heavy rainfall statistics because this data includes many storms
each year, whereas Fig. 3-9 only identifies the wettest storm each year.
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Figure 3-9: Trends in the Annual Maximum Series of qualifying long-record gauges using data through (left)
2005, and (right) 2016. A 95% confidence level is used to denote statistical significance.
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Figure 3-11 shows the changes in 70" and 98" percentiles of rainy day rainfall for each gauge. This was
calculated by determining the 70 and 98" percentiles of daily rainfall separately during 1955-1985 and
1986-2016 periods and then dividing the latter value by the former. Statistical significance is more
difficult to assign in such a scenario because the value depends on each gauge’s distribution; however, a
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Figure 3-11: Percent changes in the (left) 70" and (right) 95™" percentiles of rainy day rainfall, when
comparing the 1955-1985 and 1986-2016 periods. For the Hartford, CT gauge, the 70" percentile is about 0.40
inches per day; the 98™ percentile is about 1.95 inches per day.

change exceeding +/- 10% can roughly be used as a guideline for statistical significance. Focusing first on
the 98" percentile changes, it is seen that the results of Figs. 3-9 and 3-10 are largely corroborated,
though even more gauges now show significant increases in heavy rainfall. For example, 75 gauges
(42%) now show significant increases, while zero gauges show significant decreases (exceeding 15%). A
secondary interesting finding can be seen in the left panel of Fig. 3-11, which shows that there have
been no significant changes in the 70™" percentile (though regionally, increases are seen in the NY, CT,
and MA area). This suggests that it is the heavy rainfall events that are being disproportionately
influenced by climate change as opposed to an overall wetter climate.

Whereas the local-scale analysis of Figs. 3-6 and 3-7 show no significant increase in heavy rainfall
intensity and frequency at the Hartford gauge, Figs. 3-9 and 3-10 show significant regional-scale
increases. Thus, we can conclude that it is likely that the LCRVR has “beat the odds” by not experiencing
an increase in heavy rainfall activity at this point. This is not entirely unexpected due to the hit-or-miss
character of heavy rainfall events. Next, an analysis of future rainfall projections is conducted to
determine how heavy rainfall will change over the LCRVR in the mid- and long-term future.

Future Projections

To investigate future projections of heavy rainfall events in the LCRVR, data from the IPCC’s CMIP5
modeling experiments were used. However, using raw Global Climate Model (GCM) data would be
insufficient for informing regional and local-scale rainfall. Thus, we used output from the North
American Coordinated Regional Modeling Experiment (NA-CORDEX; Castro et al. 2015). NA-CORDEX is a
set of medium- to high-resolution regional models that uses boundary conditions from the CMIP5 GCMs
(refer to Table A-3 in Appendix A). Although NA-CORDEX used both RCP4.5 (medium emission) and
RCP8.5 (high emission) scenarios, we accessed only the latter. The rationale for this was that if a strong
signal was found for RCP8.5, it may warrant consideration of other conditions. On the contrary, if no
significant changes were found for RCP8.5, then it is unlikely that other scenarios would show significant
changes.
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Daily model output of precipitation was accessed over the 1950 — 2100 period. The 1950-2005 period
was termed a “historical hindcast” where observed greenhouse gas forcing was used, whereas, the
2006-2100 period was forced by RCP8.5 emissions. Greenhouse gas forcing refers to the effects of
changes in atmospheric greenhouse gas concentrations on radiative forcing (see the Atmospheric
Concentrations of Greenhouse Gases indicator). Energy that radiates upward from the Earth’s surface is
absorbed by these gases and then re-emitted to the lower atmosphere, which results in a warming of
the Earth’s surface. After obtaining the required data, the first step in assessing future rainfall was to
compare model climatology with the Hartford gauge over the historical period. Figure 3-12 shows that
three of the four models were slightly wetter than observations, while one model was drier than
observations. Figure 3-12 was used to perform a bias correction through quantile mapping (ThemeRI et
al. 2011). In this procedure, the model daily rainfall amount is first converted into a quantile (quantile
increment was 0.005) and then mapped to its analogous quantile using the Hartford rain gauge data.

To determine future rainfall amounts, the raw model data for the 2006 — 2100 period was corrected
using the same quantile mapping transfer function. Thus, the key assumption is that the future
quantile-quantile relationship is identical to the past (ThemeRl et al. 2011). However, in situations
where future modeled rainfall exceeded the highest value over the historical modeled period, the
guantile-quantile ratio of the highest historical modeled value was applied. In practice, this was only
noted to happen on, at most, five different future days for any given model simulation.
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Figure 3-12: Quantile-quantile plots comparing modeled 24-hour precipitation with the Hartford gauge over

the historical period. The blue line represents the result for a perfect model. Points to the right of the line
imply the model is wetter than observations, while points to the left of the line show the model is drier.
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After bias corrected future projections of daily rainfall were computed using quantile mapping, potential
changes in the future Precipitation-Frequency (P-F) curve were investigated. The P-F curve is derived by
fitting a distribution to Annual Maximum Series of daily rainfall. Analogous P-F curves can be developed
for other durations, but our model output, and thus our focus, was restricted to daily rainfall.

Figure 3-13 shows that after bias-correction, a Generalized Extreme Value (GEV) distribution provides an
excellent fit to the observed empirical Hartford P-F data within the 90% confidence level. The 90%
uncertainty band was calculated by randomly sampling the historically modeled time series 1000 times
and calculating a Generalized Extreme Value (GEV) for each randomization. Similar uncertainty
estimates were prepared for future projections. The excellent fit in Fig. 3-13 confirmed that we could
use the historical model simulations as a baseline to which future model simulations could be compared.

Figures 3-14 and 3-15 show the projected mid-term (2045) and long-term (2075) P-F curves compared to
the historical period. The mid-term value was calculated using data from 2026-2065, while the long-
term value was calculated using data from 2056-2095. Bias-corrected model projections were
concatenated into a single 160-year time series to estimate future P-F curves. This was done after
testing each individual model’s projection and finding little difference between each model, which was
somewhat expected because bias-correction was applied. Figures 3-14 and 3-15 show increases in the P-
F curve across the full range of frequencies. However, the highest fractional changes occur for higher
frequency (i.e. more frequent, lower intensity) events.

Historical Precipitation-Frequency Curve at Hartford
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Figure 3-13: Hartford rain gauge empirical Precipitation-Frequency curve (+) compared to a

Generalized Extreme Value distribution fit to bias-corrected historical model output. The GEV is
assumed to be the best distribution for the Hartford gauge.

18




Lower Connecticut River Valley Council of Governments

July 2018
Mid-term [2045] projected Precipitation-Frequency Curve at Hartford
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Figure 3-14: Modeled Precipitation-Frequency curves for the Hartford area. The black line and gray shading
denote historical (1950-2005) conditions while the red line and light red shading denote the estimate for the
2045 period.

Long-term [2075] projected Precipitation-Frequency Curve at Hartford

== Model historical GEV
12 4= Model future GEV [2075]
o
2 9
(&)
£
C
i=l
J&|
% 6
[1}]
el
<
<t
L]
3 -
0 - I | [ I | [ I
1 2 5 10 20 50 100 200

Return Period [years]
Figure 3-15: As in Fig. 3-14 except for the 2075 period.
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Table 3-3: Percent changes in projected 24-hour rainfall at
Hartford by 2045 and 2075. Bold font denotes projections

are outside the band of historical uncertainty.
Return Period Change in 2045 Change in 2075

lyear +17% +25%
2 +19% +27%

5 +18% +24%

10 +17% +22%

20 +16% +20%

50 +15% +17%
100 +14% +15%

Table 3-3 summarizes the percent changes in the most likely P-F curve value for the 2045 and 2075
periods. In general, increases up to 19% are found by 2045, while increases up to 27% are found by
2075. Comparing the uncertainty bands between the future and historical periods shows that the future
band is completely outside of the historical band for up to the 5-year event by 2045 and up to the 10-
year event by 2075. Increases found here appear to be slightly less than those described by Prein et al.
(2016), who found increases of between 30 and 50% in the statistics of shorter duration hourly heavy
rainfall across the LCRVR.

Another perspective on interpreting the results in Figs. 3-14 and 3-15 is to compare how current return
periods are projected to change. For example, Fig. 3-14 shows that today’s 100-year 24-hour rainfall
event will become a ~53-year event in 2045, while Fig. 3-15 shows that it will become a ~45-year event
in 2075. More drastic changes are seen for more frequent events. For example, a current 20-year event
will become a ~12-year event by 2045 and a ~8-year event by 2075. Thus, one method of assessing the
practical impacts from these changes is by determining which present-day recurrence intervals (e.g. 100-
year) are important for design standards and/or flood warning plans and building socioeconomic models
of how a more frequent occurrence of such events will impact response and/or recovery costs.

A notable disclaimer about the analysis presented herein is that there was little effort placed in
investigating the climate dynamics causing the changes. For example, it is not entirely clear whether the
changes are arising from stronger Nor’easters, tropical cyclones, and/or stationary frontal systems, all of
which can cause heavy rainfall in the LCRVR. It is suggested that any further analyses on this topic more
closely investigate these respective processes, which could increase the confidence that we can place in
the final results.

4. Practical Applications of Study Findings

Another part of the study included outreach to community officials from the 17 municipalities and select
additional stakeholders. An online survey and a series of three workshops were held throughout the
LCRV region. A cursory review of representative planning and regulatory documents was also
performed to determine how, in general, communities are addressing flooding conditions outside of
FEMA mapped flood hazard areas. Table 4-1 lists the municipal departments and stakeholders that were
invited to participate in the workshops and the survey.
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Table 4-1: Survey and Workshop Participant Invitees.

Municipal Officials Other Stakeholders

Town Planners CT Maritime Trades
Town Engineers U.S. Coast Guard
Public Works Directors CT Institute of Resilience and

Climate Adaptation (CIRCA)
Emergency Management Directors U.S. Army Corp of Engineers

Economic Development Directors Land Trusts
Public Health Officials Nature Conservancy
Agricultural Commission CT Department of Energy and

Environmental Protection
CT Department of Housing

Workshops
The workshops included the following content:

Workshop 1 — March 28th, 2017 - 1-3pm, Haddam Fire Department Rec, 439 Saybrook Rd, Higganum
Provided an overview of the project and an update on its status. A brief overview of planning in the
region around this hazard was presented and input sought on factors that contribute to flooding. Input
was also sought on the format of the subsequent workshops.

Workshop 2 — April 18th, 1-3pm, Old Lyme Town Hall Meeting Room, 52 Lyme St., Old Lyme
Provided an overview of the flood susceptibility model and near final mapping. There was a breakout
session to review mapping in the GIS viewer and to provide feedback.

Workshop 3 — May 9th, 1-3pm, Middletown City Hall, Council Chambers, 245 DeKoven Dr.,
Middletown Focused on using the results and products of the study to foster public awareness,
resilience action and public policy for the region. It included recommendations or best practices for
planning documents, capital budgeting, and regulatory tools.

Survey

The survey was completed by 27 respondents, nearly all of whom answered all questions asked. The
distribution of respondents among the community officials listed in Table 4-1 was nearly even, with the
exception of no responses from agricultural commissions and fewer from economic development
officials. There were more responses from Town Planners. Approximately 30% of the overall responses
came from those listed in the stakeholder column. Distribution of survey responses were also fairly
even across the communities in the region, with noticeably higher responses from Old Saybrook, Essex
and East Haddam and none from Lyme and Middlefield.

Notable findings of the survey included:
o 48% of respondents felt there have been moderate increases in flooding due to high intensity
rainfall events in the last 10-years
e  65% of respondents believed that the stormwater system capacity in their community needed at
least some improvements to handle future storm events
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60% of respondents believed that community plans (e.g. Hazard Mitigation, Conservation and
Development, Emergency Management) do not adequately address the impacts of climate
change on future flooding conditions

55% of respondents indicated the residents are somewhat (50%) or very (5%) concerned about
the impacts of climate change

When asked which planning, regulatory or policy documents were best suited to address future
flooding issues, the distribution was fairly even, with the most respondents indicating Hazard
Mitigation Plans and Plans of Conservation and Development as the best places. Zoning
Regulations were a close third.

Roads and bridges, residences and businesses, and the environment were ranked as most at
risk, respectively.

Full results of the survey are included in Appendix D.

Review of Planning Documents

As part of a previous project, Dewberry conducted a review of planning and regulatory documents from
the 17 communities in the region. To supplement that review, representative plans from urban, rural
and coastal communities were also performed as part of this project. Reviews included:

Plans of Conservation and Development (POCD)
Hazard Mitigation Plans (HMP)

Coastal Resilience Plans (CR)

Zoning / Subdivision Regulations

Findings from the review included:

Thirteen of the 17 communities have a flood/hazard element or chapter in their POCD.
o East Hampton, Lyme, Middletown and Old Lyme do not
o Most do not get specific about flooding type and trends as they are broader-based, long
term policy documents.
o Older plans (not updated in the last 3-5 years) do not address climate change in a
comprehensive way.
o Most or all do not call out increased intensity rainfall events and associated drainage
flooding issues.
All of the communities have or participate in a regional hazard mitigation plan.
o Most plans use FEMA inundation mapping, coastal storm surge, and sea level rise layers
to evaluate risk
o Some plans mention high intensity rainfall events as problematic, but most do not
address it in terms of climate change.
o Many plans address “hot spots” of localized flooding, mostly anecdotally.
o Many plans have mitigation actions that address specific infrastructure or drainage
improvements.
Old Saybrook is the only community in the region that is developing a Coastal Resiliency Plan.
Most Zoning and National Flood Insurance Program (NFIP) ordinances rely on FEMA mapping
alone for regulating flood prone development.
Subdivision and site plan review usually include peak flow and stormwater volume provisions.
o Most look at existing sources of rainfall data to design — not future conditions.
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Applications of Flood Susceptibility Mapping and Climate Data

This section builds upon the findings from the survey, review of plans, and discussions at the workshops
(primarily Workshop 3) to outline some of the ways that the data from this study can be practically
utilized at the local level to increase flood resilience. It is not intended to be an exhaustive analysis of
practical applications. The U.S. Environmental Protection Agency (EPA) published a document entitled:
Planning for Flood Recovery and Long-Term Resilience in Vermont: Smart Growth Approaches for
Disaster-Resilient Communities (EPA 231-R-14-003 — July 2014). In addition to the applications discussed
below, that document provides an excellent overview of flood recovery and resilience actions that can
be taken at the local level. In the appendices of the document is a Flood Resilience Checklist. That
appendix is included for reference in this document as Appendix E.

Plans of Conservation and Development

Communities can use the study and associated mapping to incorporate discussion of flooding other than
the Federal Emergency Management Agency (FEMA) mapped flood hazard area. Plans could reference
the flood susceptibility mapping and the importance of increased scrutiny on development and
infrastructure siting in areas outside of the FEMA mapping that share flood risk factors in common. The
susceptibility mapping is more granular than the FEMA mapping and includes areas outside of the FEMA
mapped floodplain. The FEMA mapping program typically only studied sub-watersheds greater than
one square mile. The focus was on developed areas and those where development was anticipated at
that time. Many areas were purposefully not mapped by FEMA to save limited resources or because
development was not expected to occur there at the time of mapping, which in most cases was more
than a decade ago. A complete listing, by water body, including dates studied and methods used can be
found in Sections 1.0 and 2.0 of the February 6, 2013 FEMA Flood Insurance Study report for Middlesex
County, Connecticut. The susceptibility mapping created by this project includes all land area in the
region. For the towns of Lyme and Old Lyme, the same listings are available in the same sections of the
August 5, 2013 FEMA Flood Insurance Study report for New London County, CT.

Discussion of the factors that contribute to flooding, as identified in the report, can be used to guide
policy that will ensure that future activities are not making those factors contribute more (e.g. increases
in impervious surfaces). Areas outside of the FEMA mapped floodplain could be noted for further
evaluation and, if warranted, conservation.

In general, POCDs can use the data to encourage review of subdivision and development review policies
to incorporate flood susceptibility outside of the FEMA floodplain. POCDs can reference Hazard
Mitigation Plans for more specific strategies and actions. Use of climate change projections to compare
how current return periods are projected to change. For example, Fig. 3-14 (above) shows that today’s
100-year 24-hour rainfall event will become a ~53-year event in 2045, while Fig. 3-15 (above) shows that
it will become a ~45-year event in 2075. More drastic changes are seen for more frequent events. For
example, a current 20-year event will become a ~12-year event by 2045 and a ~8-year event by 2075.
Thus, one method of assessing the practical impacts from these changes is by determining which
present-day recurrence intervals (e.g. 100-year) are important for design standards and/or flood
warning plans and building socioeconomic models of how a more frequent occurrence of such events
will impact response and/or recovery costs.
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Hazard Mitigation Plans
Many of the applications noted for POCDs can also be applied to Hazard Mitigation Plans (HMPs).
Additionally, the following uses should be considered:

Use flood susceptibility mapping to overlay and quantify what is at risk in areas outside of the
FEMA Special Flood Hazard Area (SFHA).

Evaluate contributing factors to determine what mitigation could be done to minimize their
impacts.

Compare and align mapped areas of susceptibility with community identified “hot-spots” of
flooding.

Use the model and mapping to prioritize mitigation actions.

Build in a strategy to periodically update the model with new storm data or higher resolution
datasets in general.

Identify strategies to further study most impactful susceptible areas (e.g. physical models).

Zoning and Ordinances
The following are a few examples of considerations for updating zoning regulations or ordinances:

Consider using flood susceptibility mapping to create or contribute to a flood hazard overlay
zone.

Create a future flood conditions overlay based on climate change analysis.

Consider using flood susceptibility mapping done at a local scale to help inform some level of
protection for new construction in susceptible areas not on FEMA mapping (e.g. graduated risk
zones).

Require developers to conduct further analysis of flood potential (e.g. physical models) in
susceptible areas not mapped by FEMA.

Design Standards for Subdivisions and Site Plan Review

Many communities already use some or all of the techniques described below to reduce increase flood
flows and volume resulting from new development. In general, development in areas identified on the
susceptibility mapping should undergo additional scrutiny. If further “in-field” analysis confirms that
areas outside the FEMA Special Flood Hazard Areas (SFHA) that are identified as susceptible, based on
common flood risk factors, are indeed at risk, floodplain building design and development standards
should be used in those areas.

Consider using or developing a stormwater model ordinance for green infrastructure.

Require developers to make decisions informed by future climate, and local governments to
incorporate climate change into decision-making processes.

Use Bioretention to collect stormwater runoff.

Use permeable pavement to allow runoff to flow through and be temporarily stored prior to
discharge.

Use Underground storage systems to detain runoff in underground receptacles.

Use retention ponds to manage stormwater.

Use extended detention wetlands to reduce flood risk and provide water quality and ecological
benefits.
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Capital Improvement Planning
During the annual budgeting cycle, the results of this study could be used to:

e Assist with prioritization of stormwater improvement projects;
e Assist with decision making around siting infrastructure and public facilities; and,
e Make arguments for the funding of additional studies in identified susceptible areas.

Emergency and Evacuation Planning

Areas on the flood susceptibility mapping, particularly those that are not mapped by FEMA and which
intersect with roads and bridges, should be considered when developing flood evacuation routes.
Overlaying the mapping with more local transportation layers will identify areas to be further evaluated
for low lying roadways.

Long Term Recovery Planning
In the event of a catastrophic flooding event, such as Hurricane Sandy, or a large dam breach, mapped
areas of susceptibility could be considered in the rebuilding decision making process.

5. Summary

Flooding is one of the most severe and potentially devastating natural disasters that can occur.
Awareness of areas that are currently prone and will be more prone to flooding in the future is essential
to consider in short-term, as well as long-term, planning. Such awareness comes from an understanding
of a combination of not only regional climatic factors, but also of non-climate factors that relate to
regional and site characteristics.

A summary and conclusions from the flood susceptibility analysis can be found in Giovannettone et al.
(2018). One important disclaimer about the flood susceptibility map that was developed herein is that it
was created for present-day conditions and is only to be used for planning purposes. There are several
prominent factors that could affect the future flood susceptibility map: changes in impervious area
(through urbanization), a higher sea level (for coastal areas) and heavier precipitation. A future flood
susceptibility map can be created by studying how these factors are expected to change. However, it is
expected that the present-day flood susceptibility map provides an excellent relative foundation from
which to consider future changes. In other words, it is logical to assume that higher-risk present-day
regions will remain as higher-risk regions in the future. As part of this study an Environmental Systems
Research Institute, Inc. (ESRI) geographic information system ArcGIS software map document file is
available for the region’s municipalities for future planning analysis containing the flood susceptibility,
land use, and critical infrastructure datasets created as part of this project. Please contact the Lower
Connecticut River Valley Council of Governments to obtain this data.

Regarding climatic factors affecting the LCRVR, it was found that El Nifio correlates with total rainfall at
Middletown and Cockaponset State Forest (significance at the 0.05% and 0.01% levels, respectively)
when using a lead time of 12 months, whereas the Caribbean SST index showed stronger correlation
strength at a 48-month lead time (significance at the 0.01% level for both). The strength and
significance of these correlations and the fact that future 48-month precipitation could be predicted
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with substantial skill using statistical models based on these correlations demonstrates the potential for
using such an analysis as a tool to estimate the onset and persistence of long-term extreme events.
Insight into the onset and persistence of a present or future drought with a 48-month or even a 12-
month lead time represents valuable information within the water resources management and
agricultural sectors, for example.

Local- and regional-scale statistical analyses were also performed for the city of Hartford and for a
region encompassing several Mid-Atlantic and Northeastern states, respectively, to detect changes in
historical rainfall statistics over the LCRVR. Slight linear trends in the Annual Maximum Series and
Peaks-Over-Threshold were identified at Hartford but were not found to be significant. In contrast,
several gauges, including some within Connecticut, revealed statistically positive trends. It was also
found that there were significant increases in heavy rainfall at several locations on a regional basis, but
less so when looking at more frequency rainfall events. Also, even though local-scale analyses of rainfall
within the LCRVR revealed no significant increase in heavy rainfall intensity and frequency at Hartford,
the fact that significant regional-scale increases were identified suggests that it is likely against the odds
that the LCRVR has not seen an increase in heavy rainfall activity. The contrast between the local and
regional analyses is likely due to the hit-or-miss character of heavy rainfall events. An analysis of future
rainfall projections was then conducted to determine how heavy rainfall will change over the LCRVR in
the mid- and long-term future.

An analysis of future rainfall projections was then conducted to determine how heavy rainfall will
change over the LCRVR in the mid- and long-term future using bias-corrected data from the IPCC’s
CMIP5 modeling experiments and the high emission scenario. Final conclusions related to future
projections, in addition to the historical analysis, can be summarized as follows:

e Results from the local-scale historical analysis reveal that a significant change in heavy rainfall
statistics at Hartford, which serves as a good proxy for the LCRVR, has not been detected.

e Aregional-scale historical analysis did reveal that heavy rainfall events are being
disproportionately influenced by climate change, as opposed to a transition to an overall wetter
climate, at additional locations in close proximity to the LCRVR.

e Local future analyses revealed increases in projected mid-term (2045) and long-term (2075)
Precipitation-Frequency curves at the city of Hartford for all event frequencies.

e Future analyses at Hartford also revealed that today’s 100-year 24-hour rainfall event is
estimated to become a ~53-year event in 2045 and a ~45-year event in 2075

e Even though the historical analysis revealed a heavier influence of climate change on less
frequency events, future projections are suggesting that more drastic changes will occur for
more frequent events.

These conclusions demonstrate the importance of determining which present-day recurrence intervals
(e.g. 100-year) are important for land use and recovery planning, hazard mitigation, zoning, design
standards and/or flood warning plans and then building socioeconomic models to show how a more
frequent occurrence of such events will impact response and/or recovery costs.

6. Future Work

Projects and studies that utilize novel methods in accomplishing their final objectives typically identify
several additional new directions in which to extend the work as well as additional questions that come
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up as a result of the analysis and final conclusions. The current project is no exception with the
following list providing potential avenues for future work:

- Utilize local experts’ and residents’ experiences related to flooding in the region to ground-truth
the 100-year flood susceptibility map that was developed in the current study.

- Maintain awareness of data collection for future events. Given the increase in forecast skill of
severe floods, it may be possible for River COG to work with its neighbors/partners to make sure
that any future flood inundation events are well sampled by specialized satellite and/or
synthetic aperture radar missions. These would provide the horizontal resolution to significantly
enhance the current model past the 30-m grid size.

- Create additional flood susceptibility maps for more frequent flood exceedance frequencies
using the method used for the 100-year flood events. This is limited by the availability of
satellite data during maximum inundation caused by the flood, but images for very frequent
events (e.g. 5-year) should be available and would provide inundation information for floods
that are considered a frequent annoyance rather than a potentially rare disaster.

- Re-run the analysis for future flood events. If and when a flood event occurs in the future over
the LCRVR and resources and satellite imagery permitting, recreate a flood susceptibility map
for the exceedance frequency associated with the event. The final goal would be to analyze a
sufficient number of events of varying frequencies to enable interpolation of the risk factor
regression coefficients for any flood event exceedance frequency.

- Test the effect of the flood risk factor ‘impervious area’ by performing the logistic regression
while excluding the flood risk factor ‘land cover’. ‘Impervious area’ did not show a strong
correlation with flooding as indicated by the low regression coefficients in Table 2-2, while ‘land
cover’ did show an increasing trend between the rural and urban sub-regions. One hypothesis
for this result concerns the fact that ‘land cover’ and ‘impervious area’ overlap in terms of the
type of information that they convey; this may affect the results in that one of these risk factors
(e.g. ‘land cover’) drowns out the effects of the other (e.g. ‘impervious area’). This hypothesis
can be tested by rerunning the analysis without considering ‘land cover’ to determine if the
contribution of ‘impervious area’ becomes more significant.

- Encourage the development of improved datasets related to flood risk factors that were
identified as having substantial impacts on flooding in each sub-region; this would include the
flood-risk factors ‘elevation’, ‘distance to water’, and ‘land cover’. Improved resolutions (e.g. 30
meters to 1 meter) of each input dataset would contribute substantially to improved flood
susceptibility maps at any desired exceedance frequency.

- Asresources permit, flood susceptibility map(s) should be revised, which includes rerunning the
analysis described in this report, as improved datasets of flood risk factors become available.
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APPENDIX A: Input Data Metadata

Table A-1: NA-CORDEX experiments used for this analysis. All simulations were conducted using 11-km
resolution modeling and RCP8.5 scenario boundary conditions.
Modeling Agency Responsible for Global Climate Model Regional Climate

Global Climate Model (Boundary) Model
Canadian Centre for Climate CanESM2 CanRCM4
Modeling and Analysis (Canada)

Geophysical Fluid Dynamics Lab GFDL-ESM2M RegCM4
(United States)

Geophysical Fluid Dynamics Lab GFDL-ESM2M WRF
(United States)

Met Office Hadley Centre (United HadGEM2-ESM RegCM4
Kingdom)
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APPENDIX B: NOAA Atlas 14 Heavy Precipitation Statistics for
the Lower CT Region
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Figure B-1: Precipitation-frequency curves for 24-hour rainfall for a location near
Middletown, CT. The black curve is the most likely estimate, while the green and
red curves denote the high and low bounds using the 90% confidence level.
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Figure B-2: Seasonality analysis for 24-hour precipitation for a location near Middletown, CT
(same location as Fig. B-1). The percent chance of observing an event exceeding the indicated
threshold is shown for the 2-, 5-, 10-, 25-, 50- and 100-year recurrence interval. Note that the
late summer and fall months show the highest probabilities of occurrence.
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APPENDIX C: Climate Modeling

A substantial amount of evidence (Flato et al. 2013) exists showing that climate change has already
begun to affect the distributions of atmospheric variables. Figure C-1 shows the simulation of global
temperature from a complementary set of Global Climate Model experiments with (red line) and
without (blue line) anthropogenic emissions of greenhouse gases (Kam et al. 2016). Note the simulations
with anthropogenic emissions are in excellent agreement with historically observed temperature (black
line). The modeling suggests that, at least for temperature, the separation point after which the
anthropogenic-forced climate differs from its natural state occurred in the late 1970s. This provides a
complication for the stationarity analysis herein, since choosing stations (even those with long records)
that have limited observations after the 1970s will be less affected by climate change those with a more
recent record. To address this issue, we removed stations that did not have a qualifying record after
2007, providing about 30 years of “climate-change affected” data.

- — |  Global(ANN)
7 ——— CMIP5-ALL
1 ] ——— CMIP5-NAT

Ensemble means of
individual climate mode

0.5 -

1865 1895 1925 1955 1985 2015

Figure C-1: Annual mean surface temperature anomalies (°C) for the globe. Red
(CMIP5-ALL) and blue (CMIP5-NAT) curves indicate ensemble mean simulated
anomalies through 2015 and 2012, respectively, with each available model weighted
equally; orange curves indicate individual CMIP5-ALL ensemble members. Black
curves indicate observed estimates from HadCRUT4v4 (solid) and NOAA NCEI
(dotted). All time series are adjusted to have zero mean over the period 1881-19.
[Reproduced from Kam et al. 2016; their Fig. 2.1(e)].
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APPENDIX D: Community and Stakeholder Survey Results

I Q2: Community you are from or represent?

= H |
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& Dewberry

I Q3: On a Scale of 1-5, in the last ten years, how would
you rate changes in flood conditions due to high
intensity rainfall events in your community?

1 - Extreme
[ E T s
Anmwer Choices Responses
2. Maderate
increanes .. | = Extrems incresses n flooding LT '
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3 - Mirsor
3 — Miner 29635 8
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Q1: What is your position in your Community?

Fublic Worke
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Public Heath
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Q4: Overall, how would you rank your municipal
storm water systems' ability to handle future
storm events?

1- Very
inadequat ehy

.
Inadequat by .

F-Well in
BOME AEas,...

ey -

Very adequat ehy

% 10% 20% 0% 4% e Er% Ti% B0'% 0% 100%
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Q6: On a scale of 1-4, how concerned are
residents in your community/region with the
impacts of climate change?
# Dewberry

I | Ressliand Lowar CT Rwes Waley

Q5: Do you believe that your community's Region's
plans (e.g. hazard mitigation, conservation and
development, emergency management, etc.) adequately
address the impacts of climate change on future
flooding conditions?

0% 10% % 0% 40% 50% E% % 80% 20% 100%

# Dewberry

1% | Aessliand Lowar CT Rwes Waley
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I Q7: Please choose the top three planning or regulatory
instruments that you believe are best suited to address

future policy and implementation strategies for

reducing future damage due to increased flooding as a
result of climate change.

uuuuu

= 8 _ Emargency Munagerser Pune
L9 . Y = = 2 Y

Anuwer Choices
Piane of Conservason and Develapment
Hazard Mligaon Plare

Reglience | Civate Change Adaptation Plans

Zoning Feguintions
Ordnances

Tolal Bespendenta: 2T

T " 100

5 | Aesiiand Lowar CT Riwes Waley

I Q8. Please list what you believe to be the most
effective way to educate the public on changing

hazard conditions.
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Q8: Please list what you believe to be the most
effective way to educate the public on changing
hazard conditions.
12 Pobilic manreness campagon ST a6 Pl
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Q10: What assets do you believe are at most risk
to flooding from increased rainfall intensity (e.g.
flash, riverine, drainage flooding)?

0% 10% % I 40% S0 B0% TR BO% 0% 100%

76| Restiars Lowar CT Rises Valey & Dewherry

Q11: What factors do you think contribute the
most to increase flooding from high intensity rain
events?
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Q11: What factors do you think contribute the
most to increase flooding from high intensity rain
events?

B Other (please specity)
1 Why are you asking this?

Dams. We have several dams in sucoession which if elther were o fall could cause a major flooding event

downstroam.
3 Inadequately dasinged Aranage SYSiems in SOme weas
K Higher rate of intense storms
5 Cromwell has a lot of assets in low lying flood plain arcas of the Ct River
41| Resiient Lower CT River Vabey ' Dewherry' _

Q12: What tools would best assist your
community/organization to engage in planning, policy or
other actions to reduce future damages from flooding?

..........

42| Restient Lower CT Fiwes Valiey ¥ Dewberry
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I Q12: What tools would best assist your
community/organization to engage in planning, policy or
other actions to reduce future damages from flooding?

Other [please specify)

Relocation assistance.

funding

funding for mitigation

Again stop the focksh waste of money on prosects that jus? discuss change mzher than actually implementing it

iy

B & W R = W

43| Restiand Lowar 7 Rrwes Valey & Dewherry

l] Q13: Opportunity to Provide Comments

: Responses

1 Poriand has expernenced mulipls flash ficod events in ouwr Vilage Distnct/Man Sreet busness 2000 a5 & result of
high ntensity rainfall events since 2011. These floods have resulled in damage o municipal, school. and commercial
buidings

Kilingworth has damaging flooding avents every fow years; f'm not sure the frequency has ncreased, Would ke 1o
see some data on this

3 How will you ortent the staf! ot the local lkeved 10 the results of your Study and how & can be used Bvoughout the
Ragion? (Please don say: by handing # 1o 0w First Selectman at a4 COG mesting )

“ We now what s nooded 10 be able 1o addross & g from hegh yfshort duration ns, but wo dont
have the funds 10 addness the neecs

5 This ssue could be the biggest challenge facing our shariling towns, without much progress sean 10 date 10 deal with
nse in soa level

6 Phease fox e speliing of Old Saybrook

7 £ s cur understanding that FEMA will be updating maps in 20187

44| Restient Lower CT Rver Valey @ Dewberry |
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APPENDIX E: Flood Resilience Checklist

Manning for Flood Reomeery and Long-Term Resilience in ¥Yermont

Appendix C: Flood Resilience Checklist

Is your community prepared for & possible flood? Completing this flood resilienoe chedsdist cin help you
bemgin o ansaer that question.

What is the Hood Resilience Chedkdist?

This checidist includes owerall strategies to improwve flood resilience zs well 25 spedfic strategies to
corserye land and discourage development in river corridors; to protect people, businesses, and
fadlities in vulnerzble settlements; to direct development to safer arezs; and to implemernt and
coordinate stonmwater management practices throughout the whole watershed.

Whio should use ®?

This checidist can help communities identify opportunities to improve their resilisnce to future fioods
throush pelicy and regulatory tools, including comprehensive plans, Hazard Mitigation Plans, local land
uze codes and repulztions, and non-regulztory programs implemented at the local lewvel. Local
povermimeent departments swch as community planning. public works, and emenzency serdoes; eleched
ard sppoirted bocal officials: and other community onzanizations and nonprofits can use the cheddist to
assess their community’s rezdiness to prepare for, deal with, and recover from floods.

Whry is it important?
Completing this checklist is the first step is assoessing how well 3 community is positioned to awoid
and for reduce fliood damage and to recover from floods. IF 3 community is ot yet using some of the

stratezies listed in the chedidist and would like to, the polficy options and resources listed in this report
can prowide ideas fior how to begin implementing these spproaches.

FLOD RESILIEMNCE CHECKLEST

Creerall i=s to Enhance Flood Resili=nos
{Learn more in Section 2, pp. 9-11)

1. Dwoes the community’s comprehensive plan have 3 hazard slement ,
Tes M
or flocd plsnning section® I:' = I:' "

3. Does the comprehensive plan cross-reference the kool Hazard I:l Yes I:l No
Mitigation Plan and any disaster recovery plans® B

b. Does the comprehensive plan identify flood- and erosion-

prone reas, including river corridor and fluvial erosion hazard [ es [ He
Trezs, -
if appliczble?
c. Did the local govermnmment emensency response personne|,
flood plain manager. and department of public works |:| s |:| Mo

participate in developingfupdating the comprehensiee plan®

2. [hoes the community have a local Hazard Mitigation Plan spproved

bry the Federal Emergency Management Agency (FEMA) and the [ es HEE
state emergency management agency?
3. Does the Hazard Mitigation Plan cross-reference the loczl [] Yes []Ha

comprehensive plan?

i
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Plznning for Flood Recovery and Long-Term Resilience in ¥ermon:

FLOOD RESILIERCE CHECKLIST

b. Was the local government planner or zoning administrator
imvolved in developingfupdating the Hazznd Mitigation Plan?

[Jue

. 'Were groups such s local businesses, schools,
hospitzls! mediml facilities, agrioultural landowners, and
others who could be affected by floods imolved in the Hazard
Mitigation Plan drafting process?

DN-:

d. 'Were other local govemments in the watershed involved to
coordinate responses and strategies?

|:| s

DN-:

e. Does the Hazard Mitigation Plan emphasize non-structural pre-
disaster mitigation measures such as acguiring flood-prone
lznds and adopting Ko Adverse Impact flood plain regulations?

|:| Tes

DN-:

f. Does the Hazard Bitigation Plan encourage using green
infrastructure technigues to help prevent flooding?

D Tes

DN-:

- Does the Hazard Mitigation Plan identify projects that oowld be
included in pre-disaster grant applications and does it expedite
the application process for post-disaster Hazzrd Mitigation
Grant Program aoquisitions?

v other community plans |e.g., open space or parks plans)
require or enmourage green infrastructure techmiques?

|:|Nn:|

Do 2l community plans consider possible impacs of dimate
change on sress that are likely to be flooded?

Jwe

fire structural flood mitigation approaches (such as repairing
bridges, cubserts, and levees) and non-structural approaches (such
as green infrastructure | that reguire significant investment of
resgurces coondinated with local capital improvement plans snd
prioritized in the budgpet?

Does the community partidpate in the Mational Flood Insurance
Program Community Rating System?

DN-:

Comserve Land and Discourage Development in River Corridors
{Learn more in Section 3.8, pp. 14-19)

1.

Has the community implemented non-regulatory strategies to
conserve land in river corridors, such as:

3. Aoquisition of land |or conservation easements on land] o
sl for stormwater absorption, river channel adjustment, or
other fieod resilience benefits?

[Jves

[Jte

b. Buyouwts of properties that are freguently flosded?

[Jves

[Jte

c. Transfer of development rights program that tarngets fiood-
prone aress as sending areas and safer aress &5 receiving

aireses?

D Yes

Dhl:-

d. Tax incentives for conserving vulnerable lznd?

|:| Yes

|:|I"||:-

2

41




AL RESILIENCE CHECKLIST

Lower Connecticut River Valley Council of Governments

Planning for Flood Reoresry and Long-Term Resilience in Yermont

Incentives for restoring riparian and wetland vegetation in
areas subject to erosion and flooding?

[ fes

ke

2. Has the community encouraged agricultural znd other landowners
to implement pre-disaster mitigation measures, swuch 2

the soil on their lands to retain water?

|:| Yes

a i‘:;dlil;illl bales and equipment in areas less lkely to e D Yes D Mo
b. Installing ponds or seales o capture stormwater? [ ¥es ke
c. Planting vegetation that can tolerate inundation? |:| Yes |:| No
d. WUsing land management practices to improwve the capahility of

Dhl:-

3. Has the community adopted flood plain development limits that
go beyond FEMA s minimum standzrds for Special Flood Hazard
Areas and also prohibit or reduce ary new encroachment and fi
river corridors and Fluvial Erosion Hazard areas?

in

|:| Yz

4. Has the community implemented development regulations that
incorporate approaches and standards o protedt land in
vulnersble srezs, including:

arezs subject o flonding, induding river cormidors znd Spedal
Flood Hazard Areas?

s

3. Fluvial erosion hazard zoning? |:| Yz |:| No
b. #gricultural or open space oning? s Ote
c. Conservation or cluster subdivision ordinances, where

approprizbe? [ e [N
d. Other zoning or regulatory tools that limit development in

Ote

Protect People, Buildings, and Fadlities in Vulnerable S=ttlements

{Learn more in Section 3.8, pp. 19-26)

1. Dwthe local comprehensive plan and Hazard Mitigation Plan
identify developed areas that have been or are likesly to be
flooded®

s

If o, does the comprehensive plan disoowra g

development in those aress or require srategies to reduoe
damage to buildings during floods (swch 25 elevating heating,
wentilation, and air conditioning [HVAC) systems and flosd-
proocfing basements)?

D Yes

Dhl:-

Doz the Hazard Mitigation Plan identify oritical facilities and
imfrastructurs that sre locsted in vulnerable areas and shouwld

be provected, repaired, or relocated (e.g., town facilities,
bridges, roads, and wastiewater facilities)?

|:| Yz

|:|I"||:-

2. Dwland development regulations and building codes promote
safer building and rebuilding in lood-prone areas? Specifically:

3

July 2018
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AL RESILIENCE CHECKLIST

3. Do zonimg or flood plain regulations require elevation of two or

rmore feat above base flood =levation?

e

July 2018

Ot

b. Deoes the community have the ability to establish a temiporary

post-disaster building moratorium on all new development®

e

Ot

c. Have mon-conforming use and structure standards been

revised to enoourage safer rebuilding in flood-prone areas?

e

Ot

g. Hasthe community sdopted the Imternational Building Code or

fmericn Sodety of Civil Engineers [ASCE) standards that
promote flood-resistart building?

I:l Yo

I:ll'm

e. Dipes the community plan for costs associated with follow-up
inspection and enforcement of land development regulations
and building codes?

I:l [

I:ll'm

Duoes the community require developers who zre rebuilding in
fimod-prone locations to add additional flond storsge capacity in
amy new redevelopment projects such 25 adding new parics and
open space and allowing space along the river’s edge for the river
to move during high-water events?

|:| Yes

Is the community planning for development (e.g., parks, river-
bazed recreation ] slong the river’s edge that will help connect
people to the river AND sccommod ate water during floods?

|:| Yes

Does the comprehensive plan or Hazard Mitigation Plan discuss
strateries to determine whether to relocate structunes that hawe
been repeatedly fliooded, including identifying an eguitable
approach for commmunity ireokeement in relocation decisions znd
potential funding souroes |e.g., funds from FEMA, stormaster
wtility, or special assessment district)?

I:l [

[l G e It =1L L8 h--l-'!-'-'l"--ll

{Learm miore in Section 3.C, pp. 26-27)

development in safer areas mests the community's needs for off-
street parking requirements, building height and density, front-

1. Dwoes the local comprehensive plan or Hazard Mitigation Plan .
clezrly identify safer growth arezs in the commenity® I:l fes I:l He
2. Has the community adopted policies to enoourage developmentin v CIn
these areas? = =
3. Has the community planned for new development in safer areas to .
ensune that it is oompact, walkablbe, and has a variety of uses? [ e [ma
4. Has the community changed their land use oodes and regulations D Yes D Mo
to allow for this type of development? B
5. Have land development regulations been audited to enswere that

|:| Tes

DN-:

-4
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Plznning for Flood Recowery and Long-Term Resilience in ¥ermont

AL RESILIENCE CHECKLIST

yard sethacks amd that these regpulations do ot unintentional by
inhibit development in these areas?

6. Do capital improvement plans and budsets support development
in preferred safer growth areas (e, through ireestment in |:| Tes |:| Mo
wastEwater trezstment facilities and roads)?

7. Have building codes been upgraded to promote more flood- .
resistant building in safer locations? I:l e I:l Me

{Learn meore in Section 3.0 pp. 27-31)

1. Has the community coordinated with neighboring jurisdictions tx I:l ¥ I:l .
. es o
explore 3 watershed-wide approach to stormwater management?

2. Has the community developed a stormwater wtility to serve 25 2 )
. T Pe e e [ e [ ue
funding scurce for stormwater management activities

3. Has the community implemented stratexies to reducs stormwater
¢ Ime Eies e [] ves [Jne
runft from rocds, drivesways, and parking lots

4. Do stormwater management regulations spply to areas beyond
those that are regulated by federal or state shormwater |:| Tes |:| Mo
regulations?

5. D«u-ﬂn.rr-lwatzr m:ln:g:rr'e.rt rezulations encourage the use of I:l Yes I:l Mo
green infrastructure technigues?

fi. Has the community adopted tree protection mezsures? I:l Yes |:| Mo
Has the community adopted steep slope development regulations? |:| s I:l Mo

8. Has the community adopted riparian and wetlznd buffer I:l Yes I:l Mo

requirements?
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A publication entitled A Statistical Approach to Mapping Flood Susceptibility in the Lower Connecticut
River Valley Region published in 2018 in Water Resources Research, a journal by the American
Geophysical Union in 2018, provides more details on the initial research. It is included here, and can be
found online at:

https://aqupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018 WR023018



https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2018WR023018
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Water Resources Research

RESEARCH ARTICLE
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Key Points:

« Elevation, distance to water, and
surficial materials had the highest
contributions to flood susceptibility
throughout the study area

+ The contribution of elevation and
land use to flood susceptibility
increased substantially when
comparing the urban to the rural
subregion

« Very high and high susceptible areas
add over 6% of nonwater and
wetland area to the SFHA, including
8% more developed area
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A Statistical Approach to Mapping Flood Susceptibility
in the Lower Connecticut River Valley Region

Jason Giovannettone' "), Tom Copenhaver?, Margot Burns?, and Scott Choquette”

1Dewberry, Fairfax, VA, USA, 2Dewberry, Denver, CO, USA, 3RiverCOG, Essex, CT, USA, 4Dewberry, New Haven, CT, USA

Abstract Flood susceptibility in the Lower Connecticut River Valley Region attributable to nonclimatic
flood risk factors is mapped using a quantitative method using logistic regression. Flood risk factors
considered include elevation, slope, curvature (concave, conve, or flat), distance to water, land cover,
vegetative density, surficial materials, soil drainage, and impervious surface. Values of factors at point
locations were correlated to whether a location was located within or outside of the U.S. Federal Emergency
Management Agency 100-year Special Flood Hazard Area (SFHA). The Lower Connecticut River Valley
Region was divided into urban, rural, and coastal subregions to assess the differences in factor contributions
to flood susceptibility between different region types; for each region flood risk factors were extracted from
4,000 points, of which an equal number were within or outside of the 100-year SFHA. Logistic regression
coefficients were obtained. It was found that elevation and distance to water have the greatest contribution to
flood susceptibility in the urban and coastal subregions, whereas distance to water and surficial materials
dominate in the rural subregion. The contribution of land use to flood susceptibility increased by over 200%
between the rural and urban regions. Probabilities of flooding were computed using each regional logistic
regression equation. Several areas classified as very high risk (80-100%) and high risk (60-80%) were located
outside of the SFHA and included several types of infrastructure critical for human health, safety, and
education. This study demonstrates the utility of logistic regression as an efficient methodology to map
regional flood susceptibility.

Plain Language Summary Flooding is one of the most severe and potentially devastating
natural disasters that can occur. Floods can come in many forms, including river, coastal, and flash
flooding. Whenever and wherever any of these types of flooding occur, long-term planning and
adaptation, preparedness, and response time are all critical factors in reducing the overall impacts.
Awareness of areas that are currently prone and will remain prone to flooding in the future is essential to
consider in both short-term and long-term planning. Such awareness comes from an understanding of a
combination not only of regional climatic factors but also of nonclimate factors that relate to natural,
physical, and development characteristics. The current study estimates the risk of flooding throughout the
Lower Connecticut River Valley Region (LCRVR) based on site and regional characteristics not related to
climate. Several methods were considered to estimate flood risk; the method that was finally selected
for this study involves a statistical approach in which a data set having one or more independent
variables that produce a binary value of no or yes (0 or 1, respectively) for the dependent variable is
analyzed. The independent variables in this case include several nonclimate factors related to flood risk
that could potentially affect the region and for which sufficient data were available and are referred to as
flood risk factors. Flood risk factors considered include elevation, land slope, land curvature (concave,
convex, or flat), distance to water body, land cover, density of vegetation, surface geology, ability of the
soil to drain water, and the percent of impervious surface (e.g., pavement). The objective is to link each of
the flood risk factors to the dependent variables, which in this case is the occurrence of flooding for a
flood event that is estimated to occur on average once in every 100 years. It was found that the
overall quality of recent satellite images of the LCRVR during large flood events was not sufficient for
the current analysis; therefore, it was decided to use the U.S. Federal Emergency Management Agency
100-year Special Flood Hazard Area (SFHA) to indicate areas where flood inundation would occur. The
advantage of using the SFHA and the selected statistical modeling methodology is that they allow the
contribution of each flood risk factor within the SFHA to be estimated and then applied to the entire
study region to identify additional areas outside of the SFHA that have high flood risk. The LCRVR was
divided into three subregions (urban, rural, and coastal) to accentuate the differences in the contributions
of each flood risk factor to flood risk between an urban and a rural area and between inland and coastal
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areas; for each subregion 4,000 point locations were randomly chosen from which to extract data for
each flood risk factor. An equal number of these points were selected in locations that were within and
outside of the SFHA for each subregion. Site data for each flood risk factor were extracted and associated
with a 1 if the location was within the SFHA and a 0 otherwise. The resulting relations between each
flood risk factor and flood occurrence were analyzed so that regression coefficients could be estimated
for each factor, the magnitude of which indicates the relative strength of each flood risk factor’s
influence on flooding in a subregion. It was found that elevation and distance to water have the most
influence on flood risk in the urban and coastal subregions, whereas distance to water and surface
geology dominate in the rural subregion. The contribution of elevation and land use were also found to
increase the most between the rural and urban subregions. The coefficients for each subregion are
then used to assign probabilities of flooding to all locations over a grid covering that subregion. The
results for each subregion were combined to create an overall flood probability map of the LCRVR.
Probabilities were classified very low risk (0-20%), low risk (20-40%), medium risk (40-60%), high risk
(60-80%), and very high risk (80-100%). It was observed that several areas classified as very high risk and
high risk were located outside of the SFHA. Several types of infrastructure critical for human health,
safety, and education were finally overlaid on the flood risk map to identify those assets that are most
vulnerable to the 100-year flood and may therefore require additional flood risk mitigation.

1. Introduction

Flooding is one of the most severe and potentially devastating natural disasters. Flooding occurs in many
forms, including river, coastal, and flash flooding, and arises from a variety of processes such as snow melt,
severe precipitation events, storm surge, and on a more long-term scale, sea level rise. Whenever any of these
types of flooding occur, long-term planning and adaptation, preparedness, and response time are all critical
factors in reducing the overall impacts. The severity of flooding has increased over the last several decades in
the northeast and throughout the Mississippi and Ohio River valleys (Peterson et al., 2013) because of a com-
bination of factors related to the development of urban areas along rivers and coasts and potentially climate
change, which have contributed to the total cost of flood damage escalating as well (Doocy et al., 2013).
Awareness of areas that will be more prone to flooding because of these changes is essential to consider
in long-term planning, whereas it can also inform short-term strategies, such as the development of early
warning mechanisms (Li et al.,, 2018; Lopez et al,, 2017; Rahman et al., 2013). Such awareness comes from
an understanding of a combination not only of climatic factors impacting the region but also of nonclimate
factors (e.g., urbanization) that relate to regional and site characteristics as well (Mahmoud & Gan, 2018; Miller
& Hutchins, 2017; Zhu et al., 2007).

Various types of hydrological models can be used to model flood susceptibility (Devi et al., 2015) and can be
categorized as physically based (Abbott et al., 1986; Gassman et al., 2007), conceptual (Crawford & Linsley,
1966), or data-driven (Gogoi & Chetia, 2011; Kia et al.,, 2012; Lee et al,, 2012; Matori et al,, 2014; Siddayao
etal, 2014; Ullah & Choudhury, 2013) models. Physically based models rely on an understanding of complex
physical processes and represent a mathematically idealized form of the real thing. These models use vari-
ables that are functions of both space and time and are measurable. Finite difference equations are used
to model the hydrological processes associated with the movement of water. Even though physically based
models do not require a large amount of hydrological and meteorological data for calibration, a large number
of parameters are required to describe the physical characteristics of the catchment being modeled, includ-
ing soil moisture, water depth, topography, and river network dimensions. Physically based models are ver-
satile and have the advantage of using parameters that have a physical interpretation, but much time and
resources are required to develop such models. There are a myriad of examples of physically based models,
two of which include the Soil and Water Assessment Tool (Gassman et al, 2007) and the MIKE Systeme
Hydrologique European model (Abbott et al., 1986).

Conceptual models are similar to physically based models in that they attempt to describe all of the compo-
nent hydrological processes, albeit in a more simplified and less physical process manner. They are com-
posed of interconnected reservoirs that are recharged by sources such as infiltration, percolation, and
rainfall and emptied by runoff, evaporation, and drainage, and other types of sinks. The parameters that make
up a conceptual model are assessed by analysis of field data and calibration. Unlike physically based model,
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conceptual models require an extensive amount of meteorological and hydrological data for calibration, in
addition to sophisticated analysis tools, which is not within the scope of the current project. One of the first
conceptual models developed was the Stanford Watershed Model IV by Crawford and Linsley (1966).

In contrast to physically based and conceptual models, data-driven or empirical models rely completely on
observations and an understanding of the hydrological and meteorological variables and regional character-
istics that influence flood susceptibility with no consideration given to the physics of meteorological or
hydrological processes. Many types of data-driven models use linguistic variables whose values include
words or phrases, rather than the conventional numerical variables used in the models described above.
Examples of linguistic data-driven models used for hydrological modeling purposes include (1) fuzzy logic
(FL; Gogoi & Chetia, 2011; Hundecha et al,, 2001; Sen & Altunkaynak, 2004), (2) artificial neural networks
(ANN; Dawson & Wilby, 2001; Kia et al., 2012; Kovacevic et al., 2018), (3) Adaptive Neuro-Fuzzy Interface
System (ANFIS; Ullah & Choudhury, 2013; Yaseen et al., 2018; Zounemat-Kermani & Teshnehlab, 2008), and
(4) analytical hierarchy process (AHP; Matori et al, 2014; Richardson & Amankwatia, 2018; Siddayao
etal, 2014).

The objective in most data-driven models is to produce a list of relative weights for whatever variables and
local characteristics have been identified as affecting flood susceptibility; these weights can then be used
to produce a flood susceptibility map. The method used to derive these weights represents the major differ-
ence between the various forms of data-driven models.

The first type of linguistic data-driven model is FL and is set up using membership functions and rules for fac-
tors related to flood susceptibility, hereafter referred to as flood risk factors. A membership function for each
factor incorporates various classifications (e.g., high, medium, and low) of that factor. After the variables are
partitioned into their different fuzzy classes, an IF ... THEN type of rule is set up to establish the response of
any combination of these fuzzy classes. For example, Gogoi and Chetia (2011) used a fuzzy rule-based model
to forecast runoff in the Jiadhal Basin in Northeast India. The authors used three flood risk factors (total
monthly rainfall, mean monthly temperature, and previous month'’s discharge) and three categories (e.g.,
high, medium, and low) to describe projected runoff, resulting in a total number of 33 = 27 rules. Sets of
values for each variable were then tested against these rules to identify rules that are fulfilled to a point that
exceeds a certain threshold value. The identified rules are then used to project runoff based on values of the
identified flood risk factors.

The second type of data-driven model is the ANN. ANNs consist of layers of nodes or neurons, which include
an input layer (number of neurons equals the number of flood causative factors), an output layer (number of
neurons equals the number of types of desired outputs), and one or more hidden layers where algorithms are
used to model the complex relations that are expected to exist between each flood risk factor and the influ-
ence that they have on the output. In the context of flooding, outputs would be water levels and/or flow. Kia
et al. (2012) used ANN to predict water levels and flood inundation using seven potential flood risk factors:
rainfall, slope, elevation, flow accumulation, soil, land use/cover, and geology.

Alternatively, the third linguistic model type is the ANFIS, which uses a combination of the numeric power of
neural networks and the verbal power of FL. Such a model contains features of both types of models such as
learning and optimization abilities and IF ... THEN rule thinking to map an input space to an output space. An
example of this method was developed for the Barak River basin in Northeast India by Ullah and Choudhury
(2013). Issues with using an ANN, ANFIS, or any other method that incorporates neural networks relate to their
complexity and the substantial computing power that is required to run the networks. The quality of the
resulting predictions in many cases has also been found to be inferior to other model types (Shortridge
et al,, 2016) and especially so when the data that are used to validate the model contain values outside of
the range of data used to train the model.

The final type of linguistic data-driven model is the AHP. An AHP identifies potential flood risk factors, and
their associated weights using expert opinions combined with geographical, statistical, and historical data.
For example, Matori et al. (2014) and Siddayao et al. (2014) used an AHP in performing spatial assessments
of flood susceptibility in northern Malaysia and the northern Philippines, respectively. Flood risk factors
included rainfall, geology, soil type, land use, population density, distance from river bank, and site elevation
and slope. The authors in both studies consulted with experts in their study areas and used the survey results
to develop weights for each factor. They then combined the resulting weights with a Geographical

GIOVANNETTONE ET AL.

7605

‘lozoz/z1/ze] 1 [810€20UM810T/6201°01/4Pdo/10p/ - LOT'LET 81T HT0 - S[BWINOf NOV] Aq pdjuLg



Water Resources Research 10.1029/2018WR023018

Information System to produce a color-coded map representing various levels of risk for each respective
study region. The advantage of this method is that the final product is a flood susceptibility map based on
the combined experience of several years of flooding events from various type of experts who are familiar
with the region. The disadvantage is that the results can be based on subjective and conflicting opinions,
especially when there are many flood risk factors being considered. This can be mitigated, however, when
using the overall factor weighting mechanisms that are typically used in an AHP.

In contrast to the linguistic models, statistically based data-driven models use mathematical equations that
are derived from concurrent input and output data (e.g., unit hydrograph). Regression and correlation models
are two examples that attempt to find the functional relationship between the input and output time series.
Other more quantitative types of data-driven models include multivariate statistical analysis (Allaire et al.,
2015; Sharma et al., 2015; Singh et al., 2009; Wallis, 1965) and multivariate logistic regression (MLR; Park
et al, 2017; Pradhan & Lee, 2010; Tehrany et al., 2014), or some combination of these. These methods rely
on numerical expressions that characterize the relationships between the independent flood risk factors
and flood inundation (Lee et al., 2012). The use of multivariate statistical analysis typically requires several
strict assumptions to be made prior to the analysis and requires the relation between flooding and each flood
risk factor to be considered independently from any potential relations between factors to develop weights
for each factor. MLR can be used to solve this issue by examining the relations between a dependent variable
(e.g., whether a location is flooded or not flooded) and any number of independent variables (e.g., flood risk
factors; Pradhan & Lee, 2010). An advantage of MLR is that a separate analysis is not required to estimate the
weight of each flood risk factor as this functionality is already built into such coding environments as R (R
Development Core Team, 2018). Another advantage of MLR is that the variables can be continuous and/or
categorical and is straightforward to implement.

Though somewhat ad hoc, after considering all of the advantages and disadvantages of the three major types
of models described above (physically based, conceptual, and data driven) and due to the fact that one of the
major objectives of the current study was to develop an accurate flood susceptibility mapping methodology
that requires little resources in terms of time and money and can be applied not only to the study region used
in the current study but also on a larger scale, it was decided to use a data-driven model of the Lower
Connecticut River for the current project. In addition, it was decided to use MLR over the other types of
data-driven models because of the fact that sufficient data were already available for a number of potential
flood risk factors throughout the Lower Connecticut River; therefore, a quantitative relationship between
these risk factors and flood inundation, which would provide more accuracy than the linguistic models,
would be possible without expending significant additional resources in obtaining the required data. For
these reasons, MLR was selected to model flood susceptibility for the current study.

2. Data and Methods

The Lower Connecticut River Valley Region (LCRVR) is located in the southeastern central part of the state of
Connecticut and is focused around the confluence of the Connecticut River and Long Island Sound (Figure 1).
Whereas the Connecticut River is tidally influenced throughout the study region, there are many smaller riv-
ers and tributaries where the flood threat is primarily driven by local fluvial flooding. This region is also extre-
mely heterogeneous in terms of the various land characteristics that can influence flood susceptibility. For
these reasons, and the fact that the state of Connecticut hosts a large and relatively complete database of
land and water characteristics throughout the state, the LCRVR was selected as the study region for the
current study.

Even though the methodology used to develop the flood susceptibility map of the LCRVR is based on the
method used in Tehrany et al. (2014), there are features of this work that differentiate it from previous
studies. These studies, for example, all took place outside of the United States and involved land areas
substantially smaller than the LCRVR. Because of the small size of each study region, these studies
assumed that the study regions were homogeneous in terms of the influence of various regional charac-
teristics on flood susceptibility. In contrast, the LCRVR is the first region within the United States for which
the methodology described here has been used and is sufficiently large spatially that the assumption of
homogeneity across the study area is less valid than it was in the international studies. The current study,
therefore, includes different types of subregions (e.g., coastal, rural, and urban) for which separate flood
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Figure 1. Map showing the location of the Lower Connecticut River Valley Region and the area of influence (shaded blue)
within the state of Connecticut.

susceptibility analyses are performed and between which comparisons can be made on the influence of
subregional characteristics (e.g., land use).

2.1. Flood Risk Factors

There are several types of nonclimatic data that are required as independent variables when using MLR to
estimate flood susceptibility; these independent data represent parameters that may contribute to flooding
in a region and are referred to as flood risk factors. Flood risk factors that are used for flood susceptibility map-
ping should be measurable and collected throughout the entire study region but should not represent infor-
mation that is spatially uniform. Several risk factors may be prominent in one region but not in another; for
example, the influence of flood factors will vary when comparing inland versus coastal regions or rural versus
urban regions. In general, there is no agreement on which flood risk factors are the standard for any flood
susceptibility analysis; however, there are factors that are more prominently used than others. Some of the
most common factors are listed in Table 1 along with the citations for a few of the studies in which they were
identified as influential. A subset of these flood risk factors was chosen for the present study after considering
the availability, period of record, and completeness of each data set as applied to the study region: elevation,
slope, land curvature, land cover, distance to water body, vegetation density, percent impervious surface, soil
drainage class, and surficial materials. Several of these flood risk factors are related to each other so that some
correlation is to be expected. Such correlation is common when a study is performed using MLR because the
final objective is to develop a logistic regression that includes all factors that are expected to contribute to
flooding and for which sufficient data are available. A potential issue occurs if detailed comparisons are made
between the contributions of each flood risk factor; any correlation needs to be teased out if such compar-
isons are going to be made. Because the main objective of the current study is to provide a logistic regression
equation that can be applied to the entire region, in addition to making some simple comparisons or obser-
vations related to each flood risk factor's contribution, no attempt was made to estimate these
potential correlations.

Sources of flood risk factors for the LCRVR include the U.S. Geological Survey (USGS), the Connecticut
Department of Energy and Environmental Protection (DEEP), the U.S. Department of Agriculture-National
Resources Conservation Service, and the Federal Emergency Management Agency (FEMA). Abbreviations,
sources, and the resolution/scale of each data set are given in Table 2.

All flood risk factor data were collected over the entire study region and compiled into spatial databases
using the ArcGIS 10.2 software (Environmental Systems Research Institute, 2014). Flood risk factors slope
and curvature were derived from the elevation data set, whereas the distance to water risk factor was com-
puted as the minimum distance as the crow flies between each cell and the nearest water body as
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Table 1

Flood Risk Factors and Examples of Studies in Which Each Has Been Considered

Flood risk factors Literature

Temperature Gogoi and Chetia (2011)

Previous month’s discharge Gogoi and Chetia (2011)

Population density Siddayao et al. (2014), Sinha et al. (2008), and Zhang et al. (2005)

Distance from riverbank Siddayao et al. (2014)

Landform: slope/elevation/curvature  Matori et al. (2014), Siddayao et al. (2014), Tehrany et al. (2014), Lawal et al.
(2012), Saini and Kaushik (2012), Sinha et al. (2008), and Zhang et al. (2005)

Distance from access road Qureshi and Harrison (2003)

Land-use zoning Lawal et al. (2012) and Qureshi and Harrison (2003)

Drainage density Lawal et al. (2012) and Saini and Kaushik (2012)

Proximity to drainage Sinha et al. (2008)

Soil type/drainage Matori et al. (2014), Tehrany et al. (2014), Lawal et al. (2012), Saini and Kaushik
(2012), and Yahaya et al. (2010)

Distance from urban areas Qureshi and Harrison (2003)

Precipitation/rainfall Matori et al. (2014), Tehrany et al. (2014), Lawal et al. (2012), Gogoi and Chetia
(2011), Yahaya et al. (2010), Zhang et al. (2005), and Qureshi and Harrison (2003)

Land cover/use and vegetation Matori et al. (2014), Tehrany et al. (2014), Saini and Kaushik (2012), and Yahaya
etal. (2010)

Geology Matori et al. (2014) and Tehrany et al. (2014)

Timber type/size/density Tehrany et al. (2014)

depicted on the USGS 7.5-min topographic quadrangle maps for the state of Connecticut (DEEP, 2005). All
data sets were resampled using linear interpolation to a 30-m x 30-m grid comprised of 2,142 columns
(north and south) and 1,957 rows (east and west) for a total of roughly 4.2 million points.

Prior to using each data set in the flood susceptibility analysis, each numerical flood risk factor was divided
into classes. This is accomplished using the quantile method (Papadopoulou-Vrynioti et al., 2013; Tehrany
et al, 2014; Umar et al., 2014), which partitions each numerical data set (e.g., elevation [0.0-277.5 m], slope
[0.0-120.7°], vegetation density [0.0-93.0%)], distance to water body [0.0-2,352.7 m], and percent impervious
service [0.0-96.1%)]) into classes containing the same number of features or pixels per class; partitioning the
data in this manner ensures that data are included and that a regression coefficient can be determined for
each flood risk factor class. For the purposes of this study, each of the numerical flood risk factor data sets

Table 2
Flood Risk Factors and Flood Event Data With Data Source and Resolution/Scale
Source Resolution/
Flood risk factors (year) scale URL for data access
Land cover (LAND) USGS 30m https://www.mrlc.gov/
(2011)
Elevation (ELEV); slope (SLOPE); USGS 30m https://earthexplorer.usgs.gov/
curvature (CURV) (2014)
Distance from water (DIST) DEEP (2005) 1:24,000 https://www.ct.gov/deep/cwp/view.asp?
a=2698&q=322898&deepNav_GID=1707
Soil drainage (SOIL) USDA-NRCS  varies https://sdmdataaccess.nrcs.usda.gov/
(2017)
Vegetation density (VEG) USGS 30m https://www.mrlc.gov/
(2011)
Impervious surface (IMP) USGS 30m https://www.mrlc.gov/
(2011)
Surficial materials (GEO) DEEP (2005) 1:24,000 https://www.ct.gov/deep/cwp/view.asp?
a=26988&q=322898&deepNav_GID=1707
FEMA 100-year NFHL FEMA 1:12,000 https://fema.maps.arcgis.com/home/index.html
(2016)

Note. USGS = U.S. Geological Survey; DEEP = Connecticut Department of Energy and Environmental Protection; USDA-
NRCS = US. Department of Agriculture-National Resources Conservation Service; FEMA = Federal Emergency
Management Agency; NFHL = National Flood Hazard Layer.
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Table 3

Regression Coefficients for Each Risk Factor Class

Factor Class Logistic coefficient (C/R/U) Factor Class Logistic coefficient (C/R/U)
a — 5.18/5.06/20.24 DIST (m) 0.00-39.21 —/—/—
ELEV (m) —2.65-2.84 —/—/— 39.22-117.64 —1.19/—2.16/—1.60
2.85-20.42 —4.11/-2.17/-14.87 117.65-196.06 —2.01/—3.32/-2.64
20.43-40.19 —20.48/—1.71/—15.70 196.07-274.48 —2.89/-3.63/—2.59
40.20-56.67 —18.79/—1.59/—16.27 274.49-392.12 —3.00/—3.99/—-3.20
56.68-75.35 —/—1.40/—16.41 392.13-509.75 —4.63/—4.75/—3.57
75.36-92.93 —/—1.54/—16.60 509.76-627.39 —4.45/—5.03/—3.87
92.94-109.40 —/—2.22/-17.26 627.40-784.24 —5.61/—4.89/—4.07
109.41-128.08 —/—2.53/—18.24 784.25-1,019.51 —19.61/—4.60/—3.91
128.09-152.25 —/—2.84/—17.52 1,019.52-2,352.71 —17.33/—3.92/—-2.68
152.26-277.50 —/—3.72/—18.00 SOIL not rated —/—/—
CURV Convex (—6.05 - —0.66) —/—/— excessively drained —0.28/0.16/—2.24
Flat (—0.65-0.65) 0.22/0.07/—0.46 somewhat excessively —0.19/-0.53/—1.57
Concave (0.66-6.05) —0.89/1.79/0.99 well drained —0.18/0.05/—1.43
SLOPE 0.00-0.47 —/—/— moderately well 0.03/0.70/—1.33
0.48-1.89 —0.29/-0.08/-0.10 somewhat poorly —/2.52/0.30
1.90-3.31 —0.11/-0.01/—-0.41 poorly drained 1.02/1.48/—0.65
3.32-4.73 —0.40/—0.62/—0.85 very poorly drained 0.60/1.02/0.68
4.74-6.62 —0.97/—0.57/—1.06 IMP (%) 0.00-0.00 —/—/—
6.63-8.52 —1.25/—0.92/—1.42 0.01-1.96 —0.89/—1.51/—0.27
8.53-10.88 —0.79/—0.82/—1.37 1.97-4.70 0.02/—0.21/—-0.20
10.89-14.20 —0.88/—1.39/—2.65 4.71-10.98 —0.19/-0.27/—-0.32
14.21-19.40 —1.29/-1.14/-2.17 10.99-18.82 —0.28/—1.14/—0.34
19.41-120.72 —0.70/—2.02/—2.40 18.83-28.62 —0.34/—0.44/—0.03
VEG (%) 0.00-0.00 —/—/— 28.63-38.82 —0.21/-0.23/-0.39
0.01-32.00 —0.20/0.20/0.12 38.83-49.80 0.06/—0.07/—0.57
32.01-55.00 —0.11/0.29/0.37 49.81-63.92 0.16/—1.32/—1.22
55.01-70.00 —0.42/—0.34/0.41 63.93-99.61 —0.42/—-0.31/-0.71
70.01-80.00 0.00/0.35/0.32 GEO thin till —/—/—
80.01-86.00 —0.57/0.15/0.77 sand/gravel/talus 0.90/0.89/0.82
86.01-88.00 —1.07/0.67/0.86 fines —/1.77/1.05
88.01-89.00 —1.04/0.42/0.83 floodplain alluvium 16.31/3.11/2.91
89.01-90.00 —1.26/—0.27/0.33 swamp deposits 0.08/1.37/1.41
90.01-93.00 —1.93/-0.31/—-0.18 thick till —0.58/—2.03/—0.73
LAND developed, open space —/—/— End Moraine deposits 0.08/—1.81/—
dev., low intensity —0.08/—0.04/—0.23 artificial fill 17.30/14.71/2.07
dev., med.-high intensity —0.34/0.04/—0.34 salt/tidal marsh deposits 1.18/13.38/—
barren (rock/sand/clay) 0.94/—1.16/—16.55 beach deposits 2.39/—/—

forest
shrub/scrub

grassland/herbaceous

pasture/hay
cultivated crops

wetlands (woody/emer.)

0.00/—0.65/—0.95
—1.89/-1.77/-1.03
—0.20/—-0.86/—0.69
—0.10/—1.24/—-0.38
1.22/-0.47/—0.93
0.05/0.35/—0.03

Note. C = coastal; R = rural; U = urban.

was divided into 10 categories using the classifications given in Table 3; examples of the spatial distribution of
two numerical flood risk factors are shown in Figures 2a and 2b for elevation and distance to water, respec-
tively. Regarding the other flood risk factor data sets, land curvature was divided into three classes of concav-
ity (not shown); land cover was divided into 10 classes (Figure 2c); soil drainage was divided into eight classes
(not shown); and surficial materials was divided into 10 classes (Figure 2d).

2.2. Flood Inundation

The overall objective is to develop relations between flooding and all dependent flood risk factors. Therefore,
a method is required to compare the values of each factor at a point with whether flooding would be
expected or not expected to occur at that point for a specific flood (annual) return period. Because of the
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Figure 2. Spatial distribution of flood risk factors: (a) elevation (ELEV), (b) distance to water (DIST), (c) land cover (LAND),
and (d) surficial materials (GEO).

fact that there has not been a flood event in the region greater in magnitude than a 1 in 25-year discharge for
which USGS/National Aeronautics and Space Administration Landsat satellite images of sufficient quality are
available, in addition to noting that the flood inundation delineation for all recent, but minor, flood events
falls almost entirely within the boundary of the FEMA 100-year Special Flood Hazard Area (SFHA), it was
decided to compare flood risk factors to flood inundation as defined by the FEMA 100-year SFHA (Federal
Emergency Management Agency, 2016) for the region (Figure 3) to initially train the statistical model.
Flood inundation data from the SFHA were compiled into a spatial database and resampled to a 30-
m X 30-m grid identical to those used for the flood risk factors.

It should be noted that the SFHA has received much scrutiny because of its past dependence on one-
dimensional hydraulic models and low-resolution elevation data. For example, Blessing et al. (2017) found
that the SFHA missed near 75% of flood claims made by those affected within several municipalities of
the southeastern suburbs of Houston, Texas, during five major flood events between the years 1999
and 2009, although the version of the SFHA used in Blessing et al. (2017) would have been updated
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within the Lower Connecticut River Valley Region. Light blue represents
open water, whereas dark blue represents land areas within the SFHA.

prior to 1999 and would have employed lower-quality hydrologic and
hydraulic models and lower-resolution elevation data than is currently
used. In addition, the SFHA only takes into account riverine and coastal
flooding, while many coastal events such as Hurricane Harvey are domi-
nated by pluvial flooding. It should be noted that one limitation of the
SFHA is that where there are combined effects of riverine and coastal
flooding, the modeling that is used to develop the SFHA treats them
as independent drivers, which may result in an inappropriate character-
ization of flood risk in some areas (Moftakhari et al., 2017). In another
study where a high-resolution hydrodynamic model was developed for
the entire conterminous United States using the well-accepted Height
Above Nearest Drainage methodologies (Wing et al.,, 2017), it was found
that the model matched up to 86% of the extent of the most current
version of the SFHA, which employs higher-quality one-dimensional
and two-dimensional hydraulic modeling tools and higher-resolution
elevation data (down to 1 m) from the USGS National Elevation
Dataset. Because of the improved performance of the SFHA in capturing
areas that would be potentially impacted by a 100-year flood event and
the fact that the SFHA is the only resource currently available within the
LCRVR that provides an estimate of spatial flood inundation from an
extreme flood event, the SFHA was assumed to provide a sufficiently
accurate depiction of 100-year spatial flood inundation due to riverine
and coastal events within the study region.

2.3. Logistic Regression

Logistic regression was implemented to develop a specific formula that
measures the probability of flood inundation throughout the LCRVR dur-
ing the 100-year flood event as defined in Figure 3. This is accomplished

by designating several points throughout the LCRVR as testing points from which the logistic regression
will be derived. Because of the large size of the LCRVR and in order to reduce the bias caused by one
portion of the region on another part of the region, this was accomplished by first dividing the LCRVR
into three separate subregions that represent urban, rural, and coastal environments (Figure 4). These
subregions were selected based on land cover characteristics, particularly level of development, as
depicted in Figure 2¢; the relatively urban area of Middletown, CT, is observed in the northwest portion

Figure 4. Map of the Lower Connecticut River Valley Region along with a zoomed-in area showing the distribution of sam-
pling points used to train the logistic model. Green points represent locations where flooding did not occur, while red
points represent locations where flooding did occur. Areas shaded in blue, green, and red, represent urban (U; blue), rural
(R; green), and coastal (C; red) subregions, respectively.
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of the region, while development can also be seen along the coast in the southern portion of the region;
the remainder of the region is predominantly rural. A total of 4,000 points was randomly chosen from
each subregion with the stipulation that an equal number of those points (2,000 per subregion) were
within (green dots in Figure 4) or outside (red dots in Figure 4) of the FEMA 100-year SFHA. A total of
12,000 points, therefore, was chosen from which to extract flood inundation and flood risk factor data.

Flood data for all points consisted of either a 0 or a 1 to represent whether a location was not flooded or
flooded, respectively; these values represented the dependent variable (L) in the logistic regression:

In (1 P ) =L=ag+a1x; +0ax; +... +apXn, (1)

where p is the probability of flooding. All flood risk factor data at each location were categorized into
classes according to the class ranges designated in Table 3 and represented the independent variables
(x; to x,; n = 9) in equation (1). In some cases, the land cover, soil class, and/or surficial materials risk
factors were classified as open water and/or the distance to water was equal to 0 even though the loca-
tion was located outside of any particular body of water. This apparent artifact is attributable due to
differences in the resolution of each data set, which can cause a slight shift in the boundaries of water
bodies when the data sets are processed (snapped and clipped) within ArcGIS. The result is that
extracted values from some layers will occur over open water, while extracted values from other layers
will occur over the land that is adjacent to the same body of water. These points were justifiably elimi-
nated from the analysis, which resulted in the total number of points being utilized in the urban, rural,
and coastal subregional data sets, respectively, to be 3,815; 3,708; and 3,776. The independent and
dependent variables were then analyzed using the function glm(..., family = binomial) in R to deter-
mine the regression intercept (dy) and the coefficients (a; to a, n = 9) for each flood risk factor in
equation (1).

The final step in the development of the logistic model for flood susceptibility is to estimate the mod-
el's goodness of fit. One common method that works well for binary data is the Hosmer-Lemeshow
(H-L) goodness of fit test (Hosmer et al, 2013). The H-L test computes a test statistic that compares
the predicted values of the model with observations and that approximately follows a chi-square distri-
bution. The resulting p value is then computed as the right-hand tail probability of the distribution. A
low p value (<0.05) suggests that the model fit is poor, while a high p value suggests that the null
hypothesis that there is no relation between flooding and the flood risk factors can be rejected.
Refer to Hosmer et al. (2013) for more details on the H-L test. The H-L test was implemented in R using
the hoslem.test function.

After the coefficients of the logistic regressions are determined for each flood risk factor class, the probability
of flooding at each grid cell is calculated from the first two members of equation (1) using the following
equation:

eL
= R 2
p /(1 tet) @)

which is used to create the final flood risk map. It should be noted that all flood risk factors are used but that
for each flood risk factor only one coefficient is used that corresponds to the appropriate factor class (see
Table 3) at each map grid cell.

2.4. Critical Infrastructure

The final step in the development of the flood susceptibility map involves identifying locations with vulner-
able critical infrastructure, which included the following:

- dams;

- military compounds;

- airports;

- hospitals and other health-related facilities;
- fire and police stations;

- emergency operations centers;
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Table 4
Critical Infrastructure Data Sets Used in the Current Study With Data Source and URL
Infrastructure Source (year) URL for data access
Airports DEEP (2005) https://www.ct.gov/deep
Bridges National Bridge Inventory ( Federal https://www.arcgis.com/home/item.htm|?id=
Highway Administration, 2016) 775f08232eb1424189a4e8091edf893e
Dams DEEP (1996) https://www.ct.gov/deep
EOCs RiverCOG (2017) https://www.rivercog.org
Fire and police stations  RiverCOG (2017) https://www.rivercog.org
Health USDHHS (2012) https://maps3.arcgisonline.com/ArcGlS/rest/services/A-
6/HHS_IOM_Health_Resources/MapServer/
Land use and zoning RiverCOG (2017) https://www.rivercog.org
Military MAGIC (2010) https://magic.lib.uconn.edu/connecticut_data.html
Railroads DEEP (2005) https://www.ct.gov/deep
Routes DEEP (2006) https://www.ct.gov/deep
Schools RiverCOG (2017) https://www.rivercog.org
Town halls RiverCOG (2017) https://www.rivercog.org

Note. DEEP = Connecticut Department of Energy and Environmental Protection; NBI = National Bridge Inventory;
FHWA = Federal Highway Administration; EOC = Emergency Operations Center; RiverCOG = The Lower Connecticut
River Valley Council of Governments; USDHHS = U.S. Department of Health and Human Services; MAGIC = University
of Connecticut Libraries’ Map and Geographic Information Center.

- private and public K-12 schools;
- town halls;

- major routes;

- bridges; and

- railroads.

Data sets and sources related to critical infrastructure throughout the LCRVR and that were used in the cur-
rent study are given in Table 4. All critical infrastructure data sets were clipped to the boundaries of the LCRVR
and overlaid onto the final flood susceptibility map.

3. Results
3.1. Flood Risk

The coefficients from the logistic regression are listed in Table 3 for each class of each flood risk factor over
the three subregions; the greater the magnitude of the coefficient, the stronger the impact of that risk factor
class on flood inundation in the LCRVR. The p values computed for the logistic models in the coastal, rural,
and urban subregions using the H-L test were approximately 0.76, < 0.01, and 0.60. Because of their high
p values, there is no evidence of poor fit within the coastal and urban subregions, which are the two areas
of highest concern in the LCRVR due to their relatively high population densities. The fit is much less reliable
for the more sparsely populated rural subregion. The low p value indicates that the rural subregion is suffi-
ciently large so that there is substantial variation in the relationship of each flood risk factor to flood inunda-
tion throughout its area.

In order to make a simple comparison of the results between subregions, especially due to the high
variation in the relationships of the flood risk factors to flood inundation in the rural subregion, the
regression coefficients for all flood risk factors were averaged for each subregion, the results of which
are shown in Figure 5a. There are initially three flood risk factors that stand out as having a dominant
correlation with flood susceptibility throughout the LCRVR: elevation (ELEV), distance to water (DIST),
and surficial materials (GEO). Elevation has the most influence on flood susceptibility in the urban
and coastal subregions because of the fact that both subregions are dominated by lower elevations,
whereas elevation has less influence within the rural subregion where substantially higher elevations
dominate. Distance to water has a large influence on flood susceptibility in all subregions because
of the number of water bodies located throughout the LCRVR, which include a myriad of small lakes,
ponds, and tributaries, in addition to the Connecticut River and Long Island Sound. Surficial materials
has greater influence on flood susceptibility in the rural subregion and coastal subregions where much
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Figure 5. (a) Average absolute value of the logistic regression coefficients com-
puted for each flood risk factor for the coastal (blue), rural (orange), and urban
(gray) subregions, and (b) the percent difference between the urban (U) and rural

(R) coefficients for each flood risk factor.
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of the materials deposited from previous flood events are still
present, whereas these same materials have likely been removed
within the more urban Middletown area as development has
occurred. To get an idea of additional impacts or sensitivity of
urbanization on the contribution of each flood risk factor,
Figure 5b shows a plot of the percent change in the contribution
of each flood risk factor between the urban and rural subregions.
Two flood risk factors stand out as having the largest impact: ele-
vation (already discussed) and land cover. Assuming that eleva-
tion within the urban subregion has not changed substantially
due to urbanization and that any differences in the contribution
of elevation between the subregions can be attributed to natural
differences in topographic features, Figure 5b shows that recent
changes in land cover have had the most impact on changes in
flooding behavior between the rural and urban subregions.

The results of the logistic regression for the initial set of data points
were then applied to all map grid cells in the LCRVR to produce a flood
susceptibility map for the entire region applicable to the 100-year
flood event (Figure 6a). Flood susceptibility values are plotted as the
percent chance that each 30-m x 30-m grid cell will be inundated
and then classified into five categories according to the color scale
shown in the figure: very low risk (0-20%), low risk (20-40%), medium
risk (40-60%), high risk (60-80%), and very high risk (80—-100%). The lar-
gest areas of very high and high risk are located along the Connecticut
River and its major tributaries as well as along the coast. There are also
several isolated areas of high susceptibility associated with smaller
streams and creeks.

Finally, it is observed that when looking at the transitions between the
different subregions, particularly between the coastal and rural subre-
gions, the values are not continuous and there is a slight difference
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Figure 6. Flood susceptibility map for the Lower Connecticut River Valley Region for the Federal Emergency Management
Agency 100-year flood event. Levels represent probabilities of flooding: very low: 0-20%; low: 20-40%; medium: 40-60%;
high: 60-80%; very high: 80-100%. Dashed box (inset) shown in Figure 7. (b) The map showing the spatial extent of the

SFHA is repeated for comparison purposes.
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Figure 7. Locations of various vulnerable critical infrastructure relative to areas of medium (dark green), high (dark red),
and very high (red) flood susceptibility; map is zoomed in on the city of Middletown, CT, and surrounding area (dashed box
in Figure 6). The 100-year FEMA Special Flood Hazard Area (hatched) is also included for reference and comparison.
USDA = U.S. Department of Agriculture; USGS = U.S. Geological Survey; COG = Council of Governments; FEMA = Federal
Emergency Management Agency; CNES = Centre National d’Etudes Spatiales.

across the subregion boundary. This difference is a statistical artifact of splitting the region into three subre-
gions and computing different values for the coefficients of each flood risk factor class; for example, the rural
and urban sets of factor coefficients listed in Table 3 were used to separately compute the flood maps for the
rural and coastal zones, respectively. The result is a small discontinuity between the subregions, albeit this dis-
continuity seems to manifest itself more in the lower susceptibility categories as opposed to the areas of very
high susceptibility risk. If the entire LCRVR was analyzed as one subregion, these discontinuities would disap-
pear, but the results would include a substantial bias from the urban subregion in determining flood suscept-
ibility in the coastal subregion, which would likely produce inaccuracies that are much more substantial than
the current discontinuities. The only other way to eliminate these discontinuities would be to use a sufficient
number of subregions so that the discontinuities between each are minimal, which is unrealistic, and the
choice of how subregions were chosen would be difficult to defend.

When comparing the susceptibility map to the map of the FEMA 100-year SFHA (repeated in Figure 6b for
comparisons purposes), it is important to understand key distinctions between the two. The FEMA 100-year
SFHA is limited to the subwatersheds of >2.59k mZ Other limiting issues with the FEMA 100-year SFHA are (1)
the age of the underlying studies (often more than two decades old) and (2) their focus on only areas where
development either already existed or was imminently to be and so was then anticipated. By using the sta-
tistical modeling described herein it was possible to identify the contribution of flood risk factors within the
existing FEMA 100-year SFHA and apply such factors to the entire study region to identify additional areas
outside of the FEMA flood hazard area that are susceptible to inundation by a flood event having a 1% chance
of occurring in any given year. It should be noted that there also were areas (not shown) within the SFHA that
were not identified as very high or high susceptibility in the present analysis because of the fact that values of
the dominant flood risk factors in these locations are different than those identified throughout the remain-
der of the SFHA.

Geographical Information System spatial analyses were made to compare the susceptibility mapping to
FEMA’s SFHA map using the University of Connecticut’'s Center for Land, Education, and Research 2010
Land Cover 30-m data set (Center for Land Use Education and Research Land Cover, College of Agriculture
and Natural Resources, University of Connecticut, 2010). Twenty-five percent of the region’s FEMA mapped
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flood zones are developed, which represents approximately 8% of the overall developed area in the region.
When subtracting waterbodies and wetlands at the areas designated as very high, high, or medium, an addi-
tional 115 km? are added to areas identified as susceptible. In the very high and high classified areas only, this
previously unidentified susceptible acreage adds greater than 6% of the region’s nonwater and wetland area
to a flood susceptibility zone, including an additional 8% of the region’s developed area.

One important disclaimer about the flood susceptibility map is that it was created for present-day conditions
and is only to be used for increasing engineering and stakeholder awareness; it is not intended to replace the
FEMA mapping for regulatory or flood insurance decisions. It should also be noted that the scale of the flood
susceptibility map and data are most appropriately used at the regional scale. However, use of the data at the
municipal scale should allow local stakeholders to examine areas of special concern for planning purposes.

3.2. Critical Infrastructure

Data sets for several types of critical infrastructure (listed in Table 4) were obtained and overlaid onto the final
flood susceptibility map for the LCRVR. An area surrounding and including the City of Middletown,
Connecticut, was chosen for further scrutiny because of the presence of a large very high susceptibility zone
(Figure 7). Several dams, bridges, and a large portion of the major routes and railroad in the Middletown vici-
nity are included within the high and very high susceptibility areas of 100-year flood inundation. It is also con-
cluded that there are some areas identified as having medium to very high flood susceptibility to the 100-
year flood that were not included in the FEMA 100-year SFHA. These differences exist primarily in an area
on the west and south sides of Middletown—as can be seen in Figure 7 by the red and dark green shaded
areas that are located outside of the hatched areas. These differences could have a major impact on the per-
ceived vulnerability of critical infrastructure located in these areas.

4, Conclusions

The current study estimated flood susceptibility in the LCRVR attributable to nonclimatic factors using a
method that involved performing a logistic regression for three subregions (urban, rural, and coastal) to
determine the relations between several flood risk factors and flood inundation at the 100-year return period,
which was defined by the FEMA 100-year SFHA, in each subregion. It was found that elevation and distance to
water have the most influence on flood susceptibility in the urban and coastal subregions, while distance to
water and surficial materials have the greatest influence in the rural subregion. It was also determined that
urbanization has had the most influence on the contribution of land cover to 100-year flood susceptibility
when compared to the rural subregion; development within the urban subregion has increased the contribu-
tion of land use by over 200%. The difference in the contribution of elevation to flood susceptibility between
the urban and rural subregions was greater than that for land use, but it is assumed that this is likely not
because of urbanization but rather attributable to natural differences in topographic features between the
two subregions. Because there is still sufficient room for continued growth and development within the
urban subregion, future significant increases in the effects of changing land cover on flood susceptibility in
the area are possible.

The logistic regression equation was then used to create an overall flood susceptibility map for each subre-
gion of the LCRVR onto which various types of critical infrastructure and regional existing land use and zoning
data were overlaid. Differences between the 100-year susceptibility map developed here and the FEMA 100-
year SFHA were observed. Most importantly, developed residential and commercial areas within the region
fall within the medium to very high flood susceptibility (hot spot) areas beyond what is designated as the
FEMA 100-year SFHA. Although the regional data is not at a scale large enough for local determinations, these
hot spot areas warrant further consideration for future localized flood susceptibility mapping if future suita-
ble data sets become available and further consideration at the municipal planning level.

One important disclaimer about the flood susceptibility map is that it was created for present-day conditions
and is only to be used for planning purposes. There are several prominent factors that could affect the future
flood susceptibility map: changes in impervious area (through urbanization), a higher sea level (for coastal
areas), and changes in climatic factors (e.g., heavier precipitation). A future flood susceptibility map can be
created by studying how each of these types of factors are expected to change. However, it is expected that
the present-day flood susceptibility map provides an excellent relative foundation from which to consider
future changes.
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