

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAll

Print Date:

Monday, January 6, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,196,524	77.6%
Commercial	222,755	14.4%
Industrial	83,453	5.4%
Agricultural	7,330	0.5%
Religion	14,874	1.0%
Government	6,527	0.4%
Education	10,931	0.7%
Total	1,542,394	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAll
Return Period Analyzed:	10
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 308 buildings will be at least moderately damaged. This is over 29% of the total number of buildings in the scenario. There are an estimated 25 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

Total Economic Loss (1 dot = \$300K) Overview Map

	1-	10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	1	100	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	104	25	225	55	48	12	8	2	1	0	25	6
Total	104		225		49		8		1		25	

Table 3: Expected Building Damage by Occupancy

Building	1-	10	11-	20	21-	30	31-4	10	41-5	50	>50)
Туре	Count	(%)	Count ((%)	Count (%)	Count (%)	Count (%)	Count	(%)
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	1	25	0	0	1	25	0	0	0	0	2	50
Masonry	2	22	6	67	1	11	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	101	25	219	55	46	12	8	2	1	0	23	6

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total		At Least Moderate	At Least Substantial	Loss of Use		
Emergency Operation Centers		1	1	0	1		
Fire Stations	2	2	1	0	1		
Hospitals	()	0	0	0		
Police Stations		1	1	0	1		
Schools	Ę	5	1	0	1		

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 15,022 tons of debris will be generated. Of the total amount, Finishes comprises 53% of the total, Structure comprises 29% of the total, and Foundation comprises 19%. If the debris tonnage is converted into an estimated number of truckloads, it will require 601 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 1,226 households (or 3,677 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 258 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 299.47 million dollars, which represents 19.42 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 139.91 million dollars. 53% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 41.88% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Los	<u>SS</u>					
	Building	47.62	6.82	3.75	0.92	59.11
	Content	43.09	21.97	8.18	5.90	79.14
	Inventory	0.00	0.40	1.20	0.06	1.66
	Subtotal	90.71	29.19	13.14	6.88	139.91
Business In	terruption					
	Income	0.42	31.68	0.53	2.71	35.34
	Relocation	23.74	10.01	0.65	1.68	36.09
	Rental Income	9.57	7.30	0.12	0.22	17.20
	Wage	0.98	34.02	0.94	34.99	70.93
	Subtotal	34.71	83.01	2.24	39.61	159.56
ALL	Total	125.42	112.20	15.37	46.48	299.47

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)			
	Population	Residential	Non-Residential	Total	
Connecticut					
Middlesex	13,260	1,661,441	400,494	2,061,935	
Total	13,260	1,661,441	400,494	2,061,935	
Total Study Region	13,260	1,661,441	400,494	2,061,935	

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAllRiverine

Print Date:

Wednesday, January 8, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	876,064	82.7%
Commercial	121,810	11.5%
Industrial	35,482	3.4%
Agricultural	4,250	0.4%
Religion	11,366	1.1%
Government	5,219	0.5%
Education	4,750	0.4%
Total	1,058,941	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAllRiverine
Return Period Analyzed:	10
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 2 buildings will be at least moderately damaged. This is over 50% of the total number of buildings in the scenario. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

Total Economic Loss (1 dot = \$300K) Overview Map

	1-	-10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	31	94	2	6	0	0	0	0	0	0	0	0
Total	31		2		0		0		0		0	

Table 3: Expected Building Damage by Occupancy

Building	1-'	10	11-2	20	21-3	0	31-4	10	41-5	50	>50	
Туре	Count	(%)	Count (%)								
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	0	0
Masonry	0	0	0	0	0	0	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	31	94	2	6	0	0	0	0	0	0	0	0

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use			
Emergency Operation Centers	1	0	0	0			
Fire Stations	2	0	0	0			
Hospitals	0	0	0	0			
Police Stations	1	0	0	0			
Schools	5	0	0	0			

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 45 tons of debris will be generated. Of the total amount, Finishes comprises 96% of the total, Structure comprises 1% of the total, and Foundation comprises 3%. If the debris tonnage is converted into an estimated number of truckloads, it will require 2 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 95 households (or 286 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 3 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 7.95 million dollars, which represents 0.75 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 2.19 million dollars. 72% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 50.57% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	ss					
	Building	1.26	0.05	0.05	0.00	1.36
	Content	0.52	0.18	0.09	0.03	0.82
	Inventory	0.00	0.00	0.01	0.00	0.01
	Subtotal	1.78	0.23	0.15	0.04	2.19
Business In	<u>iterruption</u>					
	Income	0.01	1.27	0.01	0.09	1.37
	Relocation	1.66	0.24	0.00	0.03	1.93
	Rental Income	0.55	0.18	0.00	0.00	0.72
	Wage	0.02	1.12	0.01	0.59	1.74
	Subtotal	2.24	2.79	0.02	0.71	5.76
ALI	Total	4.02	3.02	0.16	0.75	7.95

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building	rs)	
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Total Study Region	13,260	1,661,441	400,494	2,061,935

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAll

Print Date:

Monday, January 6, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description	on of the Region	3	
Building Inventory	,		
General	Building Stock	4	
Essentia	I Facility Inventory	5	
Flood Scenario Pa	rameters	6	
Building Damage			
General	Building Stock	7	
Essentia	I Facilities Damage	9	
Induced Flood Da	nage	10	
Debris C	eneration		
Social Impact		10	
Shelter	Requirements		
Economic Loss		12	
Building	-Related Losses		
Appendix A: Coun	ty Listing for the Region	15	
Appendix B: Regio	onal Population and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,196,524	77.6%
Commercial	222,755	14.4%
Industrial	83,453	5.4%
Agricultural	7,330	0.5%
Religion	14,874	1.0%
Government	6,527	0.4%
Education	10,931	0.7%
Total	1,542,394	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAll
Return Period Analyzed:	25
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 308 buildings will be at least moderately damaged. This is over 29% of the total number of buildings in the scenario. There are an estimated 25 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

	1-	10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	1	100	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	104	25	225	55	48	12	8	2	1	0	25	6
Total	104		225		49		8		1		25	

Table 3: Expected Building Damage by Occupancy

Building	1-10		1-10 11-20		21-	21-30		31-40		41-50		>50	
Туре	Count	(%)	Count ((%)	Count (%)	Count (%)	Count (%)	Count	(%)	
Concrete	0	0	0	0	0	0	0	0	0	0	0	0	
ManufHousing	1	25	0	0	1	25	0	0	0	0	2	50	
Masonry	2	22	6	67	1	11	0	0	0	0	0	0	
Steel	0	0	0	0	0	0	0	0	0	0	0	0	
Wood	101	25	219	55	46	12	8	2	1	0	23	6	

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

				# Facilities	
Classification	Total		At Least Moderate	At Least Substantial	Loss of Use
Emergency Operation Centers		1	1	0	1
Fire Stations	2	2	1	0	1
Hospitals	()	0	0	0
Police Stations		1	1	0	1
Schools	Ę	5	1	0	1

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 15,022 tons of debris will be generated. Of the total amount, Finishes comprises 53% of the total, Structure comprises 29% of the total, and Foundation comprises 19%. If the debris tonnage is converted into an estimated number of truckloads, it will require 601 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 1,226 households (or 3,677 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 258 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 299.47 million dollars, which represents 19.42 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 139.91 million dollars. 53% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 41.88% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Los	<u>SS</u>					
	Building	47.62	6.82	3.75	0.92	59.11
	Content	43.09	21.97	8.18	5.90	79.14
	Inventory	0.00	0.40	1.20	0.06	1.66
	Subtotal	90.71	29.19	13.14	6.88	139.91
Business In	terruption					
	Income	0.42	31.68	0.53	2.71	35.34
	Relocation	23.74	10.01	0.65	1.68	36.09
	Rental Income	9.57	7.30	0.12	0.22	17.20
	Wage	0.98	34.02	0.94	34.99	70.93
	Subtotal	34.71	83.01	2.24	39.61	159.56
ALL	Total	125.42	112.20	15.37	46.48	299.47

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)							
	Population	Residential	Non-Residential	Total					
Connecticut									
Middlesex	13,260	1,661,441	400,494	2,061,935					
Total	13,260	1,661,441	400,494	2,061,935					
Total Study Region	13,260	1,661,441	400,494	2,061,935					

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAllRiverine

Print Date:

Wednesday, January 8, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	876,064	82.7%
Commercial	121,810	11.5%
Industrial	35,482	3.4%
Agricultural	4,250	0.4%
Religion	11,366	1.1%
Government	5,219	0.5%
Education	4,750	0.4%
Total	1,058,941	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAllRiverine
Return Period Analyzed:	25
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 4 buildings will be at least moderately damaged. This is over 53% of the total number of buildings in the scenario. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

Total Economic Loss (1 dot = \$300K) Overview Map

	1-	1-10		11-20		21-30		31-40		41-50		>50	
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	
Commercial	0	0	0	0	0	0	0	0	0	0	0	0	
Education	0	0	0	0	0	0	0	0	0	0	0	0	
Government	0	0	0	0	0	0	0	0	0	0	0	0	
Industrial	0	0	0	0	0	0	0	0	0	0	0	0	
Religion	0	0	0	0	0	0	0	0	0	0	0	0	
Residential	33	89	4	11	0	0	0	0	0	0	0	0	
Total	33		4		0		0		0		0		

Table 3: Expected Building Damage by Occupancy

RiskMAP Increasing Resilience Together

Building	1-	10	11-2	20	21-3	0	31-4	0	41-5	50	>50	
Туре	Count	(%)	Count (%)								
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	0	0
Masonry	0	0	0	0	0	0	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	33	89	4	11	0	0	0	0	0	0	0	0

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

			# Facilities	
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use
Emergency Operation Centers	1	0	0	0
Fire Stations	2	0	0	0
Hospitals	0	0	0	0
Police Stations	1	0	0	0
Schools	5	0	0	0

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 58 tons of debris will be generated. Of the total amount, Finishes comprises 96% of the total, Structure comprises 1% of the total, and Foundation comprises 3%. If the debris tonnage is converted into an estimated number of truckloads, it will require 3 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 107 households (or 320 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 3 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 9.13 million dollars, which represents 0.86 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 2.83 million dollars. 69% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 51.14% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	SS					
-	Building	1.57	0.07	0.07	0.01	1.72
	Content	0.67	0.25	0.12	0.05	1.10
	Inventory	0.00	0.00	0.01	0.00	0.01
	Subtotal	2.24	0.32	0.20	0.06	2.83
Business Ir	<u>iterruption</u>					
	Income	0.01	1.37	0.01	0.09	1.49
	Relocation	1.79	0.27	0.01	0.03	2.09
	Rental Income	0.59	0.20	0.00	0.00	0.79
	Wage	0.03	1.24	0.01	0.65	1.93
	Subtotal	2.43	3.08	0.03	0.77	6.30
ALI	Total	4.67	3.40	0.23	0.83	9.13

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)					
	Population	Residential	Non-Residential	Total			
Connecticut							
Middlesex	13,260	1,661,441	400,494	2,061,935			
Total	13,260	1,661,441	400,494	2,061,935			
Total Study Region	13,260	1,661,441	400,494	2,061,935			

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAll

Print Date:

Monday, January 6, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description	on of the Region	3	
Building Inventory	,		
General	Building Stock	4	
Essentia	I Facility Inventory	5	
Flood Scenario Pa	rameters	6	
Building Damage			
General	Building Stock	7	
Essentia	I Facilities Damage	9	
Induced Flood Da	nage	10	
Debris C	eneration		
Social Impact		10	
Shelter	Requirements		
Economic Loss		12	
Building	-Related Losses		
Appendix A: Coun	ty Listing for the Region	15	
Appendix B: Regio	onal Population and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total		
Residential	1,661,441	80.6%		
Commercial	255,126	12.4%		
Industrial	98,279	4.8%		
Agricultural	8,589	0.4%		
Religion	15,970	0.8%		
Government	7,665	0.4%		
Education	14,865	0.7%		
Total	2,061,935	100%		

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,196,524	77.6%
Commercial	222,755	14.4%
Industrial	83,453	5.4%
Agricultural	7,330	0.5%
Religion	14,874	1.0%
Government	6,527	0.4%
Education	10,931	0.7%
Total	1,542,394	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAll
Return Period Analyzed:	50
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 476 buildings will be at least moderately damaged. This is over 41% of the total number of buildings in the scenario. There are an estimated 34 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

Total Economic Loss (1 dot = \$300K) Overview Map

	1-	1-10		11-20		21-30		31-40		41-50		>50	
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	
Commercial	0	0	2	67	0	0	1	33	0	0	0	0	
Education	0	0	0	0	0	0	0	0	0	0	0	0	
Government	1	100	0	0	0	0	0	0	0	0	0	0	
Industrial	0	0	1	100	0	0	0	0	0	0	0	0	
Religion	0	0	0	0	0	0	0	0	0	0	0	0	
Residential	76	14	252	46	162	30	24	4	0	0	34	6	
Total	77		255		162		25		0		34		

Table 3: Expected Building Damage by Occupancy

RiskMAP Increasing Resilience Together

Building Type	1-'	10	11-	20	21-	30	31-4	10	41-8	50	>5	0
	Count	(%)	Count ((%)	Count (%)	Count (%)	Count (%)	Count	(%)
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	8	100
Masonry	0	0	3	60	2	40	0	0	0	0	0	0
Steel	1	25	3	75	0	0	0	0	0	0	0	0
Wood	76	14	249	47	160	30	24	4	0	0	26	5

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

			# Facilities	
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use
Emergency Operation Centers	1	1	0	1
Fire Stations	2	1	0	1
Hospitals	0	0	0	0
Police Stations	1	1	0	1
Schools	5	2	0	2

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 42,791 tons of debris will be generated. Of the total amount, Finishes comprises 44% of the total, Structure comprises 34% of the total, and Foundation comprises 22%. If the debris tonnage is converted into an estimated number of truckloads, it will require 1712 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 1,553 households (or 4,658 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 338 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 453.33 million dollars, which represents 29.39 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 249.04 million dollars. 45% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 38.09% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category Area		Residential	Commercial	Industrial	Others	Total
Building Los	<u>38</u>					
	Building	73.54	15.97	8.45	2.03	99.99
	Content	61.87	50.66	19.89	12.56	144.97
	Inventory	0.00	1.04	2.89	0.15	4.07
	Subtotal	135.41	67.66	31.23	14.73	249.04
Business In	terruption					
	Income	0.53	42.08	0.79	3.53	46.93
	Relocation	25.21	13.29	0.94	2.23	41.68
	Rental Income	10.28	9.76	0.19	0.34	20.56
	Wage	1.24	46.52	1.39	45.97	95.12
	Subtotal	37.26	111.65	3.31	52.07	204.29
ALL	Total	172.68	179.31	34.54	66.80	453.33

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)					
	Population	Residential	Non-Residential	Total			
Connecticut							
Middlesex	13,260	1,661,441	400,494	2,061,935			
Total	13,260	1,661,441	400,494	2,061,935			
Total Study Region	13,260	1,661,441	400,494	2,061,935			

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAllRiverine

Print Date:

Wednesday, January 8, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	876,064	82.7%
Commercial	121,810	11.5%
Industrial	35,482	3.4%
Agricultural	4,250	0.4%
Religion	11,366	1.1%
Government	5,219	0.5%
Education	4,750	0.4%
Total	1,058,941	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAllRiverine
Return Period Analyzed:	50
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 22 buildings will be at least moderately damaged. This is over 64% of the total number of buildings in the scenario. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

	1-	-10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	46	68	22	32	0	0	0	0	0	0	0	0
Total	46		22		0		0		0		0	

Table 3: Expected Building Damage by Occupancy

Building	1-	10	11-3	20	21-3	0	31-4	10	41-5	50	>50	
Туре	Count	(%)	Count ((%)	Count (%	%)	Count (%)	Count (%)	Count (%)
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	0	0
Masonry	0	0	0	0	0	0	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	46	68	22	32	0	0	0	0	0	0	0	0

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

			# Facilities	
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use
Emergency Operation Centers	1	0	0	0
Fire Stations	2	0	0	0
Hospitals	0	0	0	0
Police Stations	1	0	0	0
Schools	5	0	0	0

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 97 tons of debris will be generated. Of the total amount, Finishes comprises 91% of the total, Structure comprises 2% of the total, and Foundation comprises 6%. If the debris tonnage is converted into an estimated number of truckloads, it will require 4 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 155 households (or 465 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 7 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 13.60 million dollars, which represents 1.28 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 5.61 million dollars. 59% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 58.58% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	<u>ss</u>					
	Building	3.21	0.15	0.11	0.01	3.49
	Content	1.32	0.48	0.19	0.10	2.09
	Inventory	0.00	0.01	0.02	0.00	0.03
	Subtotal	4.54	0.64	0.32	0.12	5.61
Business In	<u>iterruption</u>					
	Income	0.02	1.58	0.01	0.12	1.72
	Relocation	2.56	0.29	0.01	0.05	2.90
	Rental Income	0.82	0.22	0.00	0.00	1.04
	Wage	0.04	1.44	0.02	0.84	2.33
	Subtotal	3.43	3.52	0.03	1.00	7.99
ALL	Total	7.97	4.16	0.35	1.12	13.60

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)					
	Population	Residential	Non-Residential	Total			
Connecticut							
Middlesex	13,260	1,661,441	400,494	2,061,935			
Total	13,260	1,661,441	400,494	2,061,935			
Total Study Region	13,260	1,661,441	400,494	2,061,935			

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAll

Print Date:

Monday, January 6, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description	3		
Building Inventory	,		
General	Building Stock	4	
Essentia	I Facility Inventory	5	
Flood Scenario Pa	rameters	6	
Building Damage			
General	Building Stock	7	
Essentia	I Facilities Damage	9	
Induced Flood Da	nage	10	
Debris C	eneration		
Social Impact		10	
Shelter	Requirements		
Economic Loss		12	
Building	-Related Losses		
Appendix A: Coun	ty Listing for the Region	15	
Appendix B: Regio	onal Population and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total	
Residential	1,661,441	80.6%	
Commercial	255,126	12.4%	
Industrial	98,279	4.8%	
Agricultural	8,589	0.4%	
Religion	15,970	0.8%	
Government	7,665	0.4%	
Education	14,865	0.7%	
Total	2,061,935	100%	

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,196,524	77.6%
Commercial	222,755	14.4%
Industrial	83,453	5.4%
Agricultural	7,330	0.5%
Religion	14,874	1.0%
Government	6,527	0.4%
Education	10,931	0.7%
Total	1,542,394	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAll
Return Period Analyzed:	100
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 779 buildings will be at least moderately damaged. This is over 57% of the total number of buildings in the scenario. There are an estimated 63 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

Total Economic Loss (1 dot = \$300K) Overview Map

	1-	10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	3	100	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	1	100	0	0	0	0	0	0	0	0
Industrial	0	0	1	100	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	95	11	373	43	245	28	91	10	2	0	63	7
Total	95		378		245		91		2		63	

Table 3: Expected Building Damage by Occupancy

Building Type	1-10		11-20		21-30		31-40		41-50		>50	
	Count	(%)	Count	(%)	Count (%)	Count ((%)	Count (%)	Count	(%)
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	2	10	0	0	4	19	0	0	0	0	15	71
Masonry	2	13	9	60	3	20	1	7	0	0	0	0
Steel	0	0	4	100	0	0	0	0	0	0	0	0
Wood	91	11	366	44	238	29	90	11	2	0	48	6

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use			
Emergency Operation Centers	1	1	0	1			
Fire Stations	2	1	0	1			
Hospitals	0	0	0	0			
Police Stations	1	1	0	1			
Schools	5	2	0	2			

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 58,926 tons of debris will be generated. Of the total amount, Finishes comprises 40% of the total, Structure comprises 36% of the total, and Foundation comprises 25%. If the debris tonnage is converted into an estimated number of truckloads, it will require 2358 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 1,665 households (or 4,996 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 352 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 575.88 million dollars, which represents 37.34 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 350.32 million dollars. 39% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 41.14% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	<u>ss</u>					
	Building	107.66	21.82	11.84	2.61	143.93
	Content	87.86	67.96	29.23	15.42	200.47
	Inventory	0.00	1.43	4.26	0.24	5.93
	Subtotal	195.51	91.21	45.33	18.27	350.32
Business In	<u>iterruption</u>					
	Income	0.60	46.71	0.92	3.71	51.94
	Relocation	27.95	14.55	1.08	2.34	45.92
	Rental Income	11.42	10.69	0.22	0.35	22.68
	Wage	1.42	51.57	1.61	50.41	105.01
	Subtotal	41.40	123.52	3.83	56.81	225.56
ALL	Total	236.91	214.73	49.16	75.09	575.88

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)			
	Population	Residential	Non-Residential	Total	
Connecticut					
Middlesex	13,260	1,661,441	400,494	2,061,935	
Total	13,260	1,661,441	400,494	2,061,935	
Total Study Region	13,260	1,661,441	400,494	2,061,935	

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAllRiverine

Print Date:

Wednesday, January 8, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	876,064	82.7%
Commercial	121,810	11.5%
Industrial	35,482	3.4%
Agricultural	4,250	0.4%
Religion	11,366	1.1%
Government	5,219	0.5%
Education	4,750	0.4%
Total	1,058,941	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAllRiverine
Return Period Analyzed:	100
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 29 buildings will be at least moderately damaged. This is over 67% of the total number of buildings in the scenario. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

	1-	10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	54	65	29	35	0	0	0	0	0	0	0	0
Total	54		29		0		0		0		0	

Table 3: Expected Building Damage by Occupancy

Building	1-'	10	11-3	20	21-3	0	31-4	10	41-5	50	>50	
Туре	Count	(%)	Count (%)								
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	0	0
Masonry	0	0	0	0	0	0	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	54	65	29	35	0	0	0	0	0	0	0	0

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use			
Emergency Operation Centers	1	0	0	0			
Fire Stations	2	0	0	0			
Hospitals	0	0	0	0			
Police Stations	1	0	0	0			
Schools	5	0	0	0			

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 131 tons of debris will be generated. Of the total amount, Finishes comprises 91% of the total, Structure comprises 3% of the total, and Foundation comprises 7%. If the debris tonnage is converted into an estimated number of truckloads, it will require 6 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 185 households (or 555 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 7 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 16.57 million dollars, which represents 1.57 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 7.21 million dollars. 56% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 59.55% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	<u>SS</u>					
	Building	4.12	0.19	0.15	0.01	4.48
	Content	1.70	0.61	0.26	0.13	2.70
	Inventory	0.00	0.01	0.03	0.00	0.04
	Subtotal	5.82	0.81	0.44	0.14	7.21
Business In	terruption					
	Income	0.03	1.79	0.01	0.14	1.96
	Relocation	3.00	0.37	0.01	0.05	3.43
	Rental Income	0.96	0.27	0.00	0.01	1.23
	Wage	0.06	1.69	0.02	0.97	2.74
	Subtotal	4.05	4.11	0.05	1.16	9.36
ALI	Total	9.87	4.92	0.49	1.30	16.57

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)			
	Population	Residential	Non-Residential	Total	
Connecticut					
Middlesex	13,260	1,661,441	400,494	2,061,935	
Total	13,260	1,661,441	400,494	2,061,935	
Total Study Region	13,260	1,661,441	400,494	2,061,935	

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAll

Print Date:

Monday, January 6, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,196,524	77.6%
Commercial	222,755	14.4%
Industrial	83,453	5.4%
Agricultural	7,330	0.5%
Religion	14,874	1.0%
Government	6,527	0.4%
Education	10,931	0.7%
Total	1,542,394	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAll
Return Period Analyzed:	500
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 993 buildings will be at least moderately damaged. This is over 55% of the total number of buildings in the scenario. There are an estimated 119 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

	1-	-10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	5	100	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	1	100	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	1	100	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	62	6	249	24	379	36	160	15	79	8	119	11
Total	62		255		380		160		79		119	

Table 3: Expected Building Damage by Occupancy

Building	1-1	0	11-:	20	21-	30	31-4	40	41-5	50	>5	0
Туре	Count (%)	Count (%)	Count (%)	Count ((%)	Count (%)	Count	(%)
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	30	100
Masonry	1	6	5	31	9	56	0	0	1	6	0	0
Steel	0	0	4	80	1	20	0	0	0	0	0	0
Wood	61	6	245	24	370	37	160	16	78	8	89	9

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use			
Emergency Operation Centers	1	1	0	1			
Fire Stations	2	1	0	1			
Hospitals	0	0	0	0			
Police Stations	1	1	0	1			
Schools	5	2	0	2			

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 102,604 tons of debris will be generated. Of the total amount, Finishes comprises 35% of the total, Structure comprises 38% of the total, and Foundation comprises 27%. If the debris tonnage is converted into an estimated number of truckloads, it will require 4105 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 1,820 households (or 5,460 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 390 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 719.77 million dollars, which represents 46.67 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 477.03 million dollars. 34% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 44.53% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Los	<u>88</u>					
	Building	152.51	30.00	16.30	3.49	202.30
	Content	118.69	87.32	41.60	18.95	266.55
	Inventory	0.00	1.96	5.90	0.33	8.18
	Subtotal	271.19	119.28	63.79	22.77	477.03
<u>Business In</u>	terruption					
	Income	0.69	49.56	0.98	4.18	55.41
	Relocation	33.27	15.58	1.10	2.60	52.54
	Rental Income	13.70	11.56	0.23	0.41	25.90
	Wage	1.63	56.25	1.69	49.33	108.90
	Subtotal	49.29	132.95	4.00	56.51	242.74
ALI	Total	320.48	252.22	67.78	79.28	719.77

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building	rs)	
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Total Study Region	13,260	1,661,441	400,494	2,061,935

Hazus: Flood Global Risk Report

Region Name:

Clinton

Flood Scenario:

ClintonAllRiverine

Print Date:

Wednesday, January 8, 2020

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Flood. These results can be improved by using enhanced inventory data and flood hazard information.

Table of Contents

Section		Page #	
General Description of	he Region	3	
Building Inventory			
General Build	ing Stock	4	
Essential Fac	ility Inventory	5	
Flood Scenario Parame	ters	6	
Building Damage			
General Build	ing Stock	7	
Essential Fac	lities Damage	9	
Induced Flood Damage		10	
Debris Gener	ation		
Social Impact		10	
Shelter Requi	rements		
Economic Loss		12	
Building-Rela	ted Losses		
Appendix A: County Lis	ting for the Region	15	
Appendix B: Regional F	opulation and Building Value Data	16	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences (NIBS). The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The flood loss estimates provided in this report were based on a region that included 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region .

The geographical size of the region is approximately 16 square miles and contains 272 census blocks. The region contains over 5 thousand households and has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County for the study region is provided in Appendix B.

There are an estimated 5,844 buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars. Approximately 91.43% of the buildings (and 80.58% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million dollars. Table 1 and Table 2 present the relative distribution of the value with respect to the general occupancies by Study Region and Scenario respectively. Appendix B provides a general distribution of the building value by State and County.

Occupancy	Exposure (\$1000)	Percent of Total
Residential	1,661,441	80.6%
Commercial	255,126	12.4%
Industrial	98,279	4.8%
Agricultural	8,589	0.4%
Religion	15,970	0.8%
Government	7,665	0.4%
Education	14,865	0.7%
Total	2,061,935	100%

Table 1 Building Exposure by Occupancy Type for the Study Region

 Table 2

 Building Exposure by Occupancy Type for the Scenario

Occupancy	Exposure (\$1000)	Percent of Total
Residential	876,064	82.7%
Commercial	121,810	11.5%
Industrial	35,482	3.4%
Agricultural	4,250	0.4%
Religion	11,366	1.1%
Government	5,219	0.5%
Education	4,750	0.4%
Total	1,058,941	100%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police station and 1 emergency operation center.

Flood Scenario Parameters

Hazus used the following set of information to define the flood parameters for the flood loss estimate provided in this report.

Study Region Name:	Clinton
Scenario Name:	ClintonAllRiverine
Return Period Analyzed:	500
Analysis Options Analyzed:	No What-Ifs

Study Region Overview Map

Illustrating scenario flood extent, as well as exposed essential facilities and total exposure

Building Damage

General Building Stock Damage

Hazus estimates that about 51 buildings will be at least moderately damaged. This is over 71% of the total number of buildings in the scenario. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Flood Technical Manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 summarizes the expected damage by general building type.

	1-	-10	11	-20	21	-30	31	-40	41	-50	>5	0
Occupancy	Count	(%)										
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0
Commercial	0	0	0	0	0	0	0	0	0	0	0	0
Education	0	0	0	0	0	0	0	0	0	0	0	0
Government	0	0	0	0	0	0	0	0	0	0	0	0
Industrial	0	0	0	0	0	0	0	0	0	0	0	0
Religion	0	0	0	0	0	0	0	0	0	0	0	0
Residential	62	55	49	43	2	2	0	0	0	0	0	0
Total	62		49		2		0		0		0	

Table 3: Expected Building Damage by Occupancy

RiskMAP Increasing Resilience Together

Building	1-	10	11-3	20	21-3	0	31-4	10	41-5	50	>50	
Туре	Count	(%)	Count ((%)	Count (%)						
Concrete	0	0	0	0	0	0	0	0	0	0	0	0
ManufHousing	0	0	0	0	0	0	0	0	0	0	0	0
Masonry	0	0	0	0	0	0	0	0	0	0	0	0
Steel	0	0	0	0	0	0	0	0	0	0	0	0
Wood	62	55	49	43	2	2	0	0	0	0	0	0

Table 4: Expected Building Damage by Building Type

Essential Facility Damage

Before the flood analyzed in this scenario, the region had 0 hospital beds available for use. On the day of the scenario flood event, the model estimates that 0 hospital beds are available in the region.

Table 5: Expected Damage to Essential Facilities

		# Facilities					
Classification	Total	At Least Moderate	At Least Substantial	Loss of Use			
Emergency Operation Centers	1	0	0	0			
Fire Stations	2	0	0	0			
Hospitals	0	0	0	0			
Police Stations	1	0	0	0			
Schools	5	0	0	0			

If this report displays all zeros or is blank, two possibilities can explain this.

- (1) None of your facilities were flooded. This can be checked by mapping the inventory data on the depth grid.
- (2) The analysis was not run. This can be tested by checking the run box on the Analysis Menu and seeing if a message
- box asks you to replace the existing results.

Induced Flood Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the flood. The model breaks debris into three general categories: 1) Finishes (dry wall, insulation, etc.), 2) Structural (wood, brick, etc.) and 3) Foundations (concrete slab, concrete block, rebar, etc.). This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 292 tons of debris will be generated. Of the total amount, Finishes comprises 90% of the total, Structure comprises 4% of the total, and Foundation comprises 7%. If the debris tonnage is converted into an estimated number of truckloads, it will require 12 truckloads (@25 tons/truck) to remove the debris generated by the flood.

Social Impact

Shelter Requirements

Hazus estimates the number of households that are expected to be displaced from their homes due to the flood and the associated potential evacuation. Hazus also estimates those displaced people that will require accommodations in temporary public shelters. The model estimates 244 households (or 732 of people) will be displaced due to the flood. Displacement includes households evacuated from within or very near to the inundated area. Of these, 15 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the flood is 23.98 million dollars, which represents 2.26 % of the total replacement value of the scenario buildings.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the flood. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the flood.

The total building-related losses were 11.69 million dollars. 51% of the estimated losses were related to the business interruption of the region. The residential occupancies made up 60.23% of the total loss. Table 6 below provides a summary of the losses associated with the building damage.

RiskMAP

Table 6: Building-Related Economic Loss Estimates

(Millions of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Building Lo	<u>SS</u>					
	Building	6.50	0.35	0.28	0.03	7.16
	Content	2.68	1.07	0.50	0.20	4.45
	Inventory	0.00	0.02	0.05	0.00	0.08
	Subtotal	9.19	1.44	0.83	0.23	11.69
Business In	terruption					
	Income	0.04	2.22	0.02	0.19	2.46
	Relocation	3.88	0.46	0.02	0.08	4.44
	Rental Income	1.25	0.34	0.00	0.01	1.60
	Wage	0.09	2.19	0.03	1.49	3.79
	Subtotal	5.26	5.21	0.07	1.76	12.29
ALI	Total	14.44	6.64	0.90	1.99	23.98

Appendix A: County Listing for the Region

Connecticut

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building	Value (thousands of dolla	rs)
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Total Study Region	13,260	1,661,441	400,494	2,061,935

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 10-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot		
Residential	1,661,441	80.58 %		
Commercial	255,126	12.37%		
Industrial	98,279	4.77%		
Agricultural	8,589	0.42%		
Religious	15,970	0.77%		
Government	7,665	0.37%		
Education	14,865	0.72%		
Total	2,061,935	100.00%		

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 0 buildings will be at least moderately damaged. This is over 0% of the total number of buildings in the region. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Expected Building Damage by Occupancy

Table 2: Expected Building Damage by Occupancy : 10 - year Event

	No	None Mine		or	Moderate		Seve	ere	Destruc	tion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	29.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Commercial	305.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Education	10.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Government	11.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial	128.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Religion	18.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Residential	5,343.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	5,844.0	0	0.00)	0.00		0.00)	0.00	

Table 3: Expected Building Damage by Building Type : 10 - year Event

Building	None		Minor		Moderate		Severe		Destruction	
Туре	Count	: (%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Concrete	33	100.00	0	0.00	0	0.00	0	0.00	0	0.00
Masonry	308	100.00	0	0.00	0	0.00	0	0.00	0	0.00
MH	248	100.00	0	0.00	0	0.00	0	0.00	0	0.00
Steel	216	100.00	0	0.00	0	0.00	0	0.00	0	0.00
Wood	4,816	100.00	0	0.00	0	0.00	0	0.00	0	0.00

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

•	
	duran Inf, 1976, Inneh, Linneh, Linneh, Linneh, Cop, 6500, 1883, 190, 1939, 1939, 1939, Cadax (19, Kalar) 70, Onland 199, Inferior Arry, Inf. and Other (Song Kang), 64

Table 4: Expected Damage to Essential Facilities

		# Facilities			
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day	
EOCs	1	0	0	1	
Fire Stations	2	0	0	2	
Police Stations	1	0	0	1	
Schools	5	0	0	5	

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 0 tons of debris will be generated. Of the total amount, 0 tons (0%) is Other Tree Debris. Of the remaining 0 tons, Brick/Wood comprises 0% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 0 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 0 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 0 households to be displaced due to the hurricane. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 0.0 million dollars, which represents 0.00 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 0 million dollars. 0% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 0% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

Loss by Business Interruption Type (left) and Building Damage Type (right)

Table 5: Building-Related Economic Loss Estimates

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	0.00	0.00	0.00	0.00	0.00
	Content	0.00	0.00	0.00	0.00	0.00
	Inventory	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00
Business In	terruption Loss					
	Income	0.00	0.00	0.00	0.00	0.00
	Relocation	0.00	0.00	0.00	0.00	0.00
	Rental	0.00	0.00	0.00	0.00	0.00
	Wage	0.00	0.00	0.00	0.00	0.00
	Subtotal	0.00	0.00	0.00	0.00	0.00

<u>Total</u>						
	Total	0.00	0.00	0.00	0.00	0.00

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building Value (thousands of dollars)			
	Population	Residential	Non-Residential	Total	
Connecticut					
Middlesex	13,260	1,661,441	400,494	2,061,935	
Total	13,260	1,661,441	400,494	2,061,935	
Study Region Total	13,260	1,661,441	400,494	2,061,935	

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 20-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot
Residential	1,661,441	80.58 %
Commercial	255,126	12.37%
Industrial	98,279	4.77%
Agricultural	8,589	0.42%
Religious	15,970	0.77%
Government	7,665	0.37%
Education	14,865	0.72%
Total	2,061,935	100.00%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 0 buildings will be at least moderately damaged. This is over 0% of the total number of buildings in the region. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Expected Building Damage by Occupancy

Table 2: Expected Building Damage by Occupancy : 20 - year Event

	Nor	ne	Mino	or	Moder	rate	Seve	re	Destruct	ion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	28.94	99.80	0.06	0.20	0.00	0.00	0.00	0.00	0.00	0.00
Commercial	304.14	99.72	0.86	0.28	0.00	0.00	0.00	0.00	0.00	0.00
Education	9.97	99.71	0.03	0.29	0.00	0.00	0.00	0.00	0.00	0.00
Government	10.96	99.68	0.04	0.32	0.00	0.00	0.00	0.00	0.00	0.00
Industrial	127.62	99.70	0.38	0.30	0.00	0.00	0.00	0.00	0.00	0.00
Religion	17.96	99.76	0.04	0.23	0.00	0.00	0.00	0.00	0.00	0.00
Residential	5,340.38	99.95	2.48	0.05	0.13	0.00	0.01	0.00	0.00	0.00
Total	5,839.97	,	3.89		0.14		0.01		0.00	

Table 3: Expected Building Damage by Building Type : 20 - year Event

Building	None		Minor		Moderate		Seve	Severe		Destruction	
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Concrete	33	99.64	0	0.36	0	0.00	0	0.00	0	0.00	
Masonry	307	99.62	1	0.37	0	0.01	0	0.00	0	0.00	
MH	248	100.00	0	0.00	0	0.00	0	0.00	0	0.00	
Steel	215	99.68	1	0.32	0	0.00	0	0.00	0	0.00	
Wood	4,815	99.98	1	0.02	0	0.00	0	0.00	0	0.00	

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

•	
	Somera Bal, 1999, Ganda, Internet, Enternet P. Cop., 1999, 1998, 20, 1999, 1999, Landaux, 199, Tabatar Ka, Galenar Burg, Bal Agea, Mall, Bal Kala, Kang, Ka

Table 4: Expected Damage to Essential Facilities

			# Facilities	
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day
EOCs	1	0	0	1
Fire Stations	2	0	0	2
Police Stations	1	0	0	1
Schools	5	0	0	5

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 198 tons of debris will be generated. Of the total amount, 95 tons (48%) is Other Tree Debris. Of the remaining 103 tons, Brick/Wood comprises 6% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 0 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 97 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 0 households to be displaced due to the hurricane. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 0.6 million dollars, which represents 0.03 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 1 million dollars. 0% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 98% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

Table 5: Building-Related Economic Loss Estimates

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	428.10	8.04	3.41	1.54	441.09
	Content	148.01	0.00	0.00	0.00	148.01
	Inventory	0.00	0.00	0.00	0.00	0.00
	Subtotal	576.11	8.04	3.41	1.54	589.09
Business In	terruption Loss					
	Income	0.00	0.00	0.00	0.00	0.00
	Relocation	1.11	0.01	0.00	0.00	1.12
	Rental	1.61	0.00	0.00	0.00	1.61
	Wage	0.00	0.00	0.00	0.00	0.00
	Subtotal	2.72	0.01	0.00	0.00	2.73

<u>Total</u>						
	Total	578.82	8.05	3.41	1.54	591.82

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building	Value (thousands of dolla	ars)
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Study Region Total	13,260	1,661,441	400,494	2,061,935

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 50-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot	
Residential	1,661,441	80.58 %	
Commercial	255,126	12.37%	
Industrial	98,279	4.77%	
Agricultural	8,589	0.42%	
Religious	15,970	0.77%	
Government	7,665	0.37%	
Education	14,865	0.72%	
Total	2,061,935	100.00%	

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 6 buildings will be at least moderately damaged. This is over 0% of the total number of buildings in the region. There are an estimated 0 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Table 2: Expected Building Damage by Occupancy : 50 - year Event

	Nor	ne	Minc	or	Mode	rate	Seve	re	Destruct	tion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	28.55	98.46	0.40	1.37	0.04	0.13	0.01	0.04	0.00	0.00
Commercial	300.08	98.39	4.56	1.50	0.34	0.11	0.01	0.00	0.00	0.00
Education	9.85	98.48	0.15	1.47	0.00	0.04	0.00	0.00	0.00	0.00
Government	10.81	98.29	0.18	1.67	0.01	0.05	0.00	0.00	0.00	0.00
Industrial	126.10	98.51	1.83	1.43	0.07	0.05	0.01	0.01	0.00	0.00
Religion	17.73	98.50	0.26	1.45	0.01	0.05	0.00	0.00	0.00	0.00
Residential	5,250.16	98.26	87.45	1.64	5.20	0.10	0.15	0.00	0.03	0.00
Total	5,743.28	}	94.83		5.67		0.18	}	0.03	

Table 3: Expected Building Damage by Building Type : 50 - year Event

Building	None		Minor		Moderate		Seve	Severe		Destruction	
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Concrete	32	98.07	1	1.88	0	0.05	0	0.00	0	0.00	
Masonry	299	96.98	8	2.50	2	0.50	0	0.02	0	0.00	
MH	248	99.91	0	0.07	0	0.02	0	0.00	0	0.00	
Steel	213	98.42	3	1.49	0	0.09	0	0.00	0	0.00	
Wood	4,737	98.36	76	1.58	3	0.05	0	0.00	0	0.00	

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

•	
	ánnar Sal, 1950, Smith, Iainney, Iainne P. Ory, 19307, 1930, 201, 1979, 19397, Sadina, 197, Jainner Arry, Sal Apa, 1931, Sal Sila, Swy, Nay), 付

Table 4: Expected Damage to Essential Facilities

		# Facilities						
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day				
EOCs	1	0	0	1				
Fire Stations	2	0	0	2				
Police Stations	1	0	0	1				
Schools	5	0	0	5				

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 1,774 tons of debris will be generated. Of the total amount, 729 tons (41%) is Other Tree Debris. Of the remaining 1,045 tons, Brick/Wood comprises 32% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 13 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 711 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 0 households to be displaced due to the hurricane. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 6.5 million dollars, which represents 0.31 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 6 million dollars. 3% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 97% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

Table 5: Building-Related Economic Loss Estimates

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	4,915.39	123.66	34.52	21.04	5,094.61
	Content	1,160.51	7.85	4.39	1.41	1,174.17
	Inventory	0.00	0.14	0.69	0.09	0.92
	Subtotal	6,075.91	131.65	39.61	22.54	6,269.70
Business In	terruption Loss					
	Income	0.00	4.35	0.01	0.00	4.36
	Relocation	105.83	4.35	0.26	0.22	110.65
	Rental	63.71	1.94	0.00	0.00	65.65
	Wage	0.00	1.55	0.02	0.00	1.56
	Subtotal	169.54	12.18	0.29	0.22	182.22

<u>Total</u>						
	Total	6,245.44	143.82	39.89	22.76	6,451.92

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building Value (thousands of dollars)				
	Population	Residential	Non-Residential	Total		
Connecticut						
Middlesex	13,260	1,661,441	400,494	2,061,935		
Total	13,260	1,661,441	400,494	2,061,935		
Study Region Total	13,260	1,661,441	400,494	2,061,935		

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 100-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot
Residential	1,661,441	80.58 %
Commercial	255,126	12.37%
Industrial	98,279	4.77%
Agricultural	8,589	0.42%
Religious	15,970	0.77%
Government	7,665	0.37%
Education	14,865	0.72%
Total	2,061,935	100.00%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 42 buildings will be at least moderately damaged. This is over 1% of the total number of buildings in the region. There are an estimated 1 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Expected Building Damage by Occupancy

Table 2: Expected Building Damage by Occupancy : 100 - year Event

	None		Mino	Minor		Moderate		Severe		Destruction	
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Agriculture	27.09	93.40	1.53	5.26	0.27	0.94	0.11	0.39	0.01	0.02	
Commercial	286.97	94.09	15.44	5.06	2.39	0.78	0.21	0.07	0.00	0.00	
Education	9.45	94.49	0.49	4.94	0.05	0.55	0.00	0.02	0.00	0.00	
Government	10.33	93.92	0.60	5.41	0.07	0.65	0.00	0.02	0.00	0.00	
Industrial	121.31	94.77	5.83	4.55	0.73	0.57	0.12	0.09	0.00	0.00	
Religion	16.92	93.99	0.99	5.48	0.09	0.50	0.00	0.03	0.00	0.00	
Residential	4,932.00	92.31	373.08	6.98	35.91	0.67	1.05	0.02	0.96	0.02	
Total	5,404.07	7	397.95		39.52		1.50		0.97		

Table 3: Expected Building Damage by Building Type : 100 - year Event

Building	No	None		Minor		Moderate		Severe		Destruction	
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Concrete	31	93.38	2	5.84	0	0.76	0	0.02	0	0.00	
Masonry	279	90.44	22	7.13	7	2.32	0	0.10	0	0.01	
MH	245	98.96	2	0.77	1	0.20	0	0.00	0	0.07	
Steel	204	94.57	10	4.60	2	0.75	0	0.08	0	0.00	
Wood	4,449	92.38	342	7.10	23	0.48	1	0.02	1	0.02	

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

•	čenard 3d 1959 Senth Lanas Lanasti Spac (1999) 1898 593 1956 19593 Sußen 107 Polanyill Julanui Bern 194 Lana (1958 Sul 1940 Pour Pout 4d
	on one of the set of the set of the second operation o

Table 4: Expected Damage to Essential Facilities

		# Facilities				
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day		
EOCs	1	0	0	1		
Fire Stations	2	0	0	2		
Police Stations	1	0	0	1		
Schools	5	0	0	5		

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 7,160 tons of debris will be generated. Of the total amount, 3,721 tons (52%) is Other Tree Debris. Of the remaining 3,439 tons, Brick/Wood comprises 33% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 45 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 2,321 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 0 households to be displaced due to the hurricane. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 17.3 million dollars, which represents 0.84 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 17 million dollars. 5% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 94% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

Table 5: Building-Related Economic Loss Estimates

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	12,680.66	457.12	150.30	87.35	13,375.43
	Content	2,924.67	70.68	47.99	17.04	3,060.39
	Inventory	0.00	1.60	7.04	0.93	9.57
	Subtotal	15,605.33	529.40	205.34	105.33	16,445.40
Business In	terruption Loss					
	Income	0.00	45.40	0.70	6.91	53.02
	Relocation	389.48	51.22	5.16	9.83	455.68
	Rental	215.31	28.59	0.55	0.84	245.28
	Wage	0.00	46.60	1.19	36.72	84.51
	Subtotal	604.79	171.80	7.60	54.29	838.49

<u>Total</u>						
	Total	16,210.12	701.20	212.94	159.62	17,283.88

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building Value (thousands of dollars)				
	Population	Residential	Non-Residential	Total		
Connecticut						
Middlesex	13,260	1,661,441	400,494	2,061,935		
Total	13,260	1,661,441	400,494	2,061,935		
Study Region Total	13,260	1,661,441	400,494	2,061,935		

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 200-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot
Residential	1,661,441	80.58 %
Commercial	255,126	12.37%
Industrial	98,279	4.77%
Agricultural	8,589	0.42%
Religious	15,970	0.77%
Government	7,665	0.37%
Education	14,865	0.72%
Total	2,061,935	100.00%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 174 buildings will be at least moderately damaged. This is over 3% of the total number of buildings in the region. There are an estimated 9 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Table 2: Expected Building Damage by Occupancy : 200 - year Event

	Nor	ne	Min	or	Moder	ate	Seve	re	Destruct	ion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	24.04	82.89	3.58	12.34	0.91	3.14	0.43	1.48	0.04	0.15
Commercial	256.69	84.16	36.44	11.95	10.47	3.43	1.39	0.46	0.00	0.00
Education	8.52	85.24	1.15	11.49	0.29	2.95	0.03	0.33	0.00	0.00
Government	9.18	83.49	1.37	12.44	0.41	3.72	0.04	0.35	0.00	0.00
Industrial	110.19	86.09	13.43	10.49	3.63	2.84	0.71	0.56	0.04	0.03
Religion	15.00	83.34	2.43	13.49	0.52	2.89	0.05	0.27	0.00	0.00
Residential	4,345.78	81.34	842.27	15.76	137.79	2.58	8.63	0.16	8.52	0.16
Total	4,769.40)	900.67	,	154.03		11.29		8.61	

Table 3: Expected Building Damage by Building Type : 200 - year Event

Building	No	ne	Min	or	Mode	rate	Seve	ere	Destru	ction
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Concrete	27	81.99	4	13.15	1	4.49	0	0.37	0	0.00
Masonry	242	78.71	44	14.19	20	6.57	1	0.47	0	0.06
MH	236	95.33	7	2.94	3	1.26	0	0.03	1	0.44
Steel	184	85.35	23	10.57	8	3.50	1	0.57	0	0.00
Wood	3,912	81.23	785	16.31	103	2.15	8	0.16	7	0.15

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

0		
	 Sourcest Ball, HERE, Germin, Internep, Increment P Copy, 85800, USBS, RVO, NPS 	; 1993-99, Geodece, 189, Nodestar 199, Ordestar Burley, Bat Aspan, MCHT, Sat Online (Anay, Norg), (d

Table 4: Expected Damage to Essential Facilities

		# Facilities				
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day		
EOCs	1	0	0	1		
Fire Stations	2	0	0	2		
Police Stations	1	0	0	1		
Schools	5	0	0	3		

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 11,823 tons of debris will be generated. Of the total amount, 5,330 tons (45%) is Other Tree Debris. Of the remaining 6,493 tons, Brick/Wood comprises 43% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 112 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 3,682 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 5 households to be displaced due to the hurricane. Of these, 1 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 41.8 million dollars, which represents 2.03 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 42 million dollars. 7% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 90% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	27,769.19	1,420.85	568.13	296.83	30,055.00
	Content	7,772.99	393.29	303.64	96.61	8,566.53
	Inventory	0.00	8.79	42.01	3.98	54.78
	Subtotal	35,542.18	1,822.93	913.77	397.42	38,676.30
Business In	terruption Loss					
	Income	0.00	181.75	6.86	21.69	210.30
	Relocation	1,436.67	248.14	40.34	48.49	1,773.64
	Rental	634.67	140.95	5.56	4.01	785.18
	Wage	0.00	193.70	11.33	155.81	360.84
	Subtotal	2,071.34	764.54	64.08	229.99	3,129.96

<u>Total</u>						
	Total	37,613.52	2,587.47	977.85	627.41	41,806.26

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building Value (thousands of dollars)				
	Population	Residential	Non-Residential	Total		
Connecticut						
Middlesex	13,260	1,661,441	400,494	2,061,935		
Total	13,260	1,661,441	400,494	2,061,935		
Study Region Total	13,260	1,661,441	400,494	2,061,935		

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 500-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot		
Residential	1,661,441	80.58 %		
Commercial	255,126	12.37%		
Industrial	98,279	4.77%		
Agricultural	8,589	0.42%		
Religious	15,970	0.77%		
Government	7,665	0.37%		
Education	14,865	0.72%		
Total	2,061,935	100.00%		

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 532 buildings will be at least moderately damaged. This is over 9% of the total number of buildings in the region. There are an estimated 41 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Table 2: Expected Building Damage by Occupancy : 500 - year Event

	Nor	ne	Min	Minor Mo		Moderate		Severe		Destruction	
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)	
Agriculture	18.61	64.17	6.58	22.70	2.42	8.34	1.20	4.14	0.19	0.65	
Commercial	201.30	66.00	64.29	21.08	32.11	10.53	7.25	2.38	0.05	0.02	
Education	6.79	67.87	2.06	20.62	0.96	9.59	0.19	1.92	0.00	0.00	
Government	7.19	65.38	2.24	20.40	1.27	11.52	0.30	2.69	0.00	0.00	
Industrial	88.85	69.41	24.30	18.98	11.67	9.12	3.01	2.35	0.17	0.13	
Religion	11.71	65.04	4.30	23.91	1.69	9.38	0.30	1.67	0.00	0.00	
Residential	3,422.41	64.05	1,451.42	27.16	381.86	7.15	46.55	0.87	40.76	0.76	
Total	3,756.85	5	1,555.20)	431.97	,	58.80)	41.17		

Table 3: Expected Building Damage by Building Type : 500 - year Event

Building	No	ne	Min	nor Moderat		erate	ate Severe		Destruction	
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Concrete	21	63.06	7	20.83	4	13.53	1	2.59	0	0.00
Masonry	188	61.11	69	22.25	45	14.49	6	1.85	1	0.30
МН	211	85.01	19	7.56	13	5.15	1	0.31	5	1.97
Steel	147	67.95	40	18.40	23	10.78	6	2.85	0	0.02
Wood	3,066	63.67	1,366	28.36	308	6.39	41	0.86	35	0.72

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

Table 4: Expected Damage to Essential Facilities

				_	
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day	
EOCs	1	0	0	1	
Fire Stations	2	0	0	2	
Police Stations	1	0	0	1	
Schools	5	0	0	0	

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 24,610 tons of debris will be generated. Of the total amount, 11,152 tons (45%) is Other Tree Debris. Of the remaining 13,458 tons, Brick/Wood comprises 49% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 265 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 6,835 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 27 households to be displaced due to the hurricane. Of these, 12 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 107.9 million dollars, which represents 5.23 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 108 million dollars. 9% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 88% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	64,793.85	4,487.36	1,851.54	892.51	72,025.25
	Content	22,712.03	1,807.41	1,204.48	381.20	26,105.12
	Inventory	0.00	41.66	158.14	13.59	213.38
	Subtotal	87,505.88	6,336.43	3,214.15	1,287.29	98,343.75
Business In	terruption Loss					
	Income	0.21	256.95	16.71	31.59	305.45
	Relocation	5,160.10	828.33	144.78	155.18	6,288.39
	Rental	1,908.71	460.35	18.45	13.78	2,401.29
	Wage	0.48	303.70	27.00	199.63	530.81
	Subtotal	7,069.50	1,849.32	206.94	400.18	9,525.94

<u>Total</u>						
	Total	94,575.38	8,185.75	3,421.09	1,687.47	107,869.69

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building	Value (thousands of dolla	ars)
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Study Region Total	13,260	1,661,441	400,494	2,061,935

Hazus: Hurricane Global Risk Report

Region Name: Clinton

Hurricane Scenario: Probabilistic 1000-year Return Period

Print Date:

Tuesday, October 1, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building Inventory	4	
General Building Stock		
Essential Facility Inventory		
Hurricane Scenario Parameters	5	
Building Damage	6	
General Building Stock		
Essential Facilities Damage		
Induced Hurricane Damage	8	
Debris Generation		
Social Impact	8	
Shelter Requirements		
Economic Loss	9	
Building Losses		
Appendix A: County Listing for the Region	10	
Appendix B: Regional Population and Building Value Data	11	

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot
Residential	1,661,441	80.58 %
Commercial	255,126	12.37%
Industrial	98,279	4.77%
Agricultural	8,589	0.42%
Religious	15,970	0.77%
Government	7,665	0.37%
Education	14,865	0.72%
Total	2,061,935	100.00%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:

Type:

Probabilistic Probabilistic

Building Damage

General Building Stock Damage

Hazus estimates that about 957 buildings will be at least moderately damaged. This is over 16% of the total number of buildings in the region. There are an estimated 100 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Expected Building Damage by Occupancy

Table 2: Expected Building Damage by Occupancy : 1000 - year Event

	Nor	ne	Min	or	Mode	rate	Seve	ere	Destruct	ion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	14.53	50.12	8.27	28.51	3.84	13.23	1.97	6.81	0.39	1.33
Commercial	157.29	51.57	77.41	25.38	53.02	17.38	17.13	5.62	0.15	0.05
Education	5.34	53.44	2.50	25.01	1.65	16.54	0.50	5.01	0.00	0.00
Government	5.57	50.65	2.63	23.88	2.05	18.63	0.75	6.85	0.00	0.00
Industrial	70.77	55.29	29.75	23.24	20.18	15.77	6.94	5.42	0.36	0.28
Religion	9.08	50.45	5.24	29.10	2.88	16.01	0.80	4.43	0.00	0.00
Residential	2,733.05	51.15	1,765.66	33.05	628.96	11.77	116.33	2.18	98.99	1.85
Total	2,995.64	Ļ	1,891.45	5	712.59)	144.43	}	99.89	

Table 3: Expected Building Damage by Building Type : 1000 - year Event

Building No		ne	Min	or	Mode	erate	Seve	ere	Destru	iction
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Concrete	16	48.04	8	23.34	7	21.78	2	6.84	0	0.00
Masonry	147	47.85	80	25.83	66	21.42	13	4.18	2	0.72
MH	185	74.41	27	10.83	24	9.57	2	0.92	11	4.26
Steel	116	53.55	47	21.81	39	17.92	14	6.66	0	0.05
Wood	2,437	50.60	1,669	34.66	521	10.83	103	2.14	85	1.77

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

Table 4: Expected Damage to Essential Facilities

			# Facilities				
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day			
EOCs	1	0	0	1			
Fire Stations	2	0	0	2			
Police Stations	1	0	0	1			
Schools	5	0	0	0			

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 38,430 tons of debris will be generated. Of the total amount, 16,931 tons (44%) is Other Tree Debris. Of the remaining 21,499 tons, Brick/Wood comprises 53% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 457 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 10,070 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 87 households to be displaced due to the hurricane. Of these, 37 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 196.6 million dollars, which represents 9.53 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 197 million dollars. 10% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 87% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Da	amage					
	Building	112,643.09	8,536.74	3,603.97	1,669.56	126,453.37
	Content	43,403.46	3,956.46	2,530.76	794.11	50,684.79
	Inventory	0.00	89.48	326.79	24.16	440.43
	Subtotal	156,046.56	12,582.67	6,461.53	2,487.82	177,578.58
Business In	terruption Loss					
	Income	3.25	617.99	33.44	39.88	694.56
	Relocation	10,510.51	1,559.06	274.57	290.28	12,634.42
	Rental	3,708.69	885.25	35.95	27.77	4,657.66
	Wage	7.61	695.45	54.58	266.51	1,024.16
	Subtotal	14,230.06	3,757.75	398.54	624.44	19,010.79

<u>Total</u>						
	Total	170,276.62	16,340.42	6,860.07	3,112.26	196,589.37

Appendix A: County Listing for the Region

Connecticut - Middlesex

Appendix B: Regional Population and Building Value Data

	_	Building	Value (thousands of dolla	ars)
	Population	Residential	Non-Residential	Total
Connecticut				
Middlesex	13,260	1,661,441	400,494	2,061,935
Total	13,260	1,661,441	400,494	2,061,935
Study Region Total	13,260	1,661,441	400,494	2,061,935

Hazus: Hurricane Global Risk Report

Region Name:

Clinton

Hurricane Scenario:

UN-NAMED-1938-4

Print Date:

Tuesday, October 15, 2019

Disclaimer:

This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific Hurricane. These results can be improved by using enhanced inventory data.

Table of Contents

Section	Page #
General Description of the Region	3
Building Inventory	4
General Building Stock	
Essential Facility Inventory	
Hurricane Scenario Parameters	5
Building Damage	6
General Building Stock	
Essential Facilities Damage	
Induced Hurricane Damage	8
Debris Generation	
Social Impact	8
Shelter Requirements	
Economic Loss	9
Building Losses	
Appendix A: County Listing for the Region	10
Appendix B: Regional Population and Building Value Data	11

General Description of the Region

Hazus is a regional multi-hazard loss estimation model that was developed by the Federal Emergency Management Agency and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The hurricane loss estimates provided in this report are based on a region that includes 1 county(ies) from the following state(s):

- Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.39 square miles and contains 4 census tracts. There are over 5 thousand households in the region and a total population of 13,260 people (2010 Census Bureau data). The distribution of population by State and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,062 million dollars (2014 dollars). Approximately 91% of the buildings (and 81% of the building value) are associated with residential housing.

Building Inventory

General Building Stock

Hazus estimates that there are 5,844 buildings in the region which have an aggregate total replacement value of 2,062 million (2014 dollars). Table 1 presents the relative distribution of the value with respect to the general occupancies. Appendix B provides a general distribution of the building value by State and County.

Building Exposure by Occupancy Type

Occupancy	Exposure (\$1000)	Percent of Tot
Residential	1,661,441	80.58%
Commercial	255,126	12.37%
Industrial	98,279	4.77%
Agricultural	8,589	0.42%
Religious	15,970	0.77%
Government	7,665	0.37%
Education	14,865	0.72%
Total	2,061,935	100.00%

Essential Facility Inventory

For essential facilities, there are no hospitals in the region with a total bed capacity of no beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities.

Hurricane Scenario

Hazus used the following set of information to define the hurricane parameters for the hurricane loss estimate provided in this report.

Scenario Name:	UN-NAMED-1938-4
Туре:	Historic
Max Peak Gust in Study Region:	114 mph

Hurricane Global Risk Report

Building Damage

General Building Stock Damage

Hazus estimates that about 597 buildings will be at least moderately damaged. This is over 10% of the total number of buildings in the region. There are an estimated 48 buildings that will be completely destroyed. The definition of the 'damage states' is provided in the Hazus Hurricane technical manual. Table 2 below summarizes the expected damage by general occupancy for the buildings in the region. Table 3 summarizes the expected damage by general building type.

Table 2: Expected	l Building	Damage b	by (Dccupancy
-------------------	------------	----------	------	-----------

	Nor	e	Mino	or	Mode	rate	Seve	re	Destruct	ion
Occupancy	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	18.02	62.15	6.89	23.74	2.60	8.96	1.29	4.44	0.20	0.70
Commercial	195.55	64.12	66.98	21.96	34.60	11.34	7.81	2.56	0.06	0.02
Education	6.50	65.01	2.18	21.85	1.09	10.86	0.23	2.28	0.00	0.00
Government	6.91	62.82	2.39	21.69	1.39	12.65	0.31	2.83	0.00	0.00
Industrial	85.46	66.76	25.78	20.14	13.13	10.26	3.44	2.69	0.19	0.15
Religion	11.36	63.14	4.46	24.77	1.83	10.18	0.34	1.91	0.00	0.00
Residential	3,284.91	61.48	1,529.93	28.63	425.59	7.97	55.28	1.03	47.29	0.89
Total	3,608.72	2	1,638.61		480.23	5	68.71		47.74	

Table 3: Expected Building Damage by Building Type

Building	Nor	ne	Min	or	Mode	erate	Seve	ere	Destruc	tion
Туре	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Concrete	20	61.18	7	21.40	5	14.54	1	2.88	0	0.00
Masonry	181	58.72	72	23.25	48	15.61	6	2.07	1	0.35
МН	206	83.13	21	8.36	15	5.92	1	0.37	5	2.21
Steel	142	65.72	42	19.29	26	11.83	7	3.13	0	0.02
Wood	2,941	61.07	1,439	29.89	345	7.17	49	1.03	41	0.84

Essential Facility Damage

Before the hurricane, the region had no hospital beds available for use. On the day of the hurricane, the model estimates that 0 hospital beds (0%) are available for use by patients already in the hospital and those injured by the hurricane. After one week, none of the beds will be in service. By 30 days, none will be operational.

Thematic Map of Essential Facilities with greater than 50% moderate

Table 4: Expected Damage to Essential Facilities

			# Facilities	
Classification	Total	Probability of at Least Moderate Damage > 50%	Probability of Complete Damage > 50%	Expected Loss of Use < 1 day
EOCs	1	0	0	1
Fire Stations	2	0	0	2
Police Stations	1	0	0	1
Schools	5	0	0	0

Induced Hurricane Damage

Debris Generation

Hazus estimates the amount of debris that will be generated by the hurricane. The model breaks the debris into four general categories: a) Brick/Wood, b) Reinforced Concrete/Steel, c) Eligible Tree Debris, and d) Other Tree Debris. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 27,365 tons of debris will be generated. Of the total amount, 12,578 tons (46%) is Other Tree Debris. Of the remaining 14,787 tons, Brick/Wood comprises 49% of the total, Reinforced Concrete/Steel comprises of 0% of the total, with the remainder being Eligible Tree Debris. If the building debris tonnage is converted to an estimated number of truckloads, it will require 291 truckloads (@25 tons/truck) to remove the building debris generated by the hurricane. The number of Eligible Tree Debris truckloads will depend on how the 7,504 tons of Eligible Tree Debris are collected and processed. The volume of tree debris generally ranges from about 4 cubic yards per ton for chipped or compacted tree debris to about 10 cubic yards per ton for bulkier, uncompacted debris.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the hurricane and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 33 households to be displaced due to the hurricane. Of these, 13 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Economic Loss

The total economic loss estimated for the hurricane is 120.1 million dollars, which represents 5.82 % of the total replacement value of the region's buildings.

Building-Related Losses

The building related losses are broken into two categories: direct property damage losses and business interruption losses. The direct property damage losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the hurricane. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the hurricane.

The total property damage losses were 120 million dollars. 9% of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 88% of the total loss. Table 5 below provides a summary of the losses associated with the building damage.

(Thousands of dollars)

Category	Area	Residential	Commercial	Industrial	Others	Total
Property Dar	nage					
	Building	71,997.01	4,762.62	2,008.70	977.90	79,746.24
	Content	25,611.54	1,937.19	1,320.78	421.67	29,291.18
	Inventory	0.00	44.45	173.49	13.79	231.73
	Subtotal	97,608.55	6,744.27	3,502.97	1,413.35	109,269.15
Business Inte	erruption Loss					
	Income	0.36	277.01	19.02	33.24	329.62
	Relocation	5,966.76	891.47	157.75	170.18	7,186.16
	Rental	2,180.42	497.57	20.33	15.37	2,713.68
	Wage	0.84	324.81	30.74	210.78	567.16
	Subtotal	8,148.38	1,990.85	227.83	429.57	10,796.63

<u>Total</u>						
	Total	105,756.93	8,735.11	3,730.80	1,842.92	120,065.77

Appendix A: County Listing for the Region

Connecticut Middlesov

- Middlesex

Appendix B: Regional Population and Building Value Data

		Building Value (thousands of dollars)				
	Population	Residential	Non-Residential	Total		
Connecticut						
Middlesex	13,260	1,661,441	400,494	2,061,935		
Total	13,260	1,661,441	400,494	2,061,935		
Study Region Total	13,260	1,661,441	400,494	2,061,935		

Hazus: Earthquake Global Risk Report

Region Name:	Clinton
Earthquake Scenario:	EastHaddam
Print Date:	October 16, 2019

Disclaimer: This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, geotechnical, and observed ground motion data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building and Lifeline Inventory	4	
Building Inventory		
Critical Facility Inventory		
Transportation and Utility Lifeline Inventory		
Earthquake Scenario Parameters	7	
Direct Earthquake Damage	8	
Buildings Damage		
Essential Facilities Damage		
Transportation and Utility Lifeline Damage		
Induced Earthquake Damage	14	
Fire Following Earthquake		
Debris Generation		
Social Impact	15	
Shelter Requirements		
Casualties		
Economic Loss	17	
Building Related Losses		
Transportation and Utility Lifeline Losses		

Appendix A: County Listing for the Region Appendix B: Regional Population and Building Value Data

General Description of the Region

Hazus-MH is a regional earthquake loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The earthquake loss estimates provided in this report was based on a region that includes 1 county(ies) from the following state(s):

Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.38 square miles and contains 4 census tracts. There are over 5 thousand households in the region which has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by Total Region and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,061 (millions of dollars). Approximately 91.00 % of the buildings (and 81.00% of the building value) are associated with residential housing.

The replacement value of the transportation and utility lifeline systems is estimated to be 342 and 14 (millions of dollars), respectively.

Building and Lifeline Inventory

Building Inventory

Hazus estimates that there are 5 thousand buildings in the region which have an aggregate total replacement value of 2,061 (millions of dollars). Appendix B provides a general distribution of the building value by Total Region and County.

In terms of building construction types found in the region, wood frame construction makes up 83% of the building inventory. The remaining percentage is distributed between the other general building types.

Critical Facility Inventory

Hazus breaks critical facilities into two (2) groups: essential facilities and high potential loss facilities (HPL). Essential facilities include hospitals, medical clinics, schools, fire stations, police stations and emergency operations facilities. High potential loss facilities include dams, levees, military installations, nuclear power plants and hazardous material sites.

For essential facilities, there are 0 hospitals in the region with a total bed capacity of beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities. With respect to high potential loss facilities (HPL), there are no dams identified within the inventory. The inventory also includes 3 hazardous material sites, no military installations and no nuclear power plants.

Transportation and Utility Lifeline Inventory

Within Hazus, the lifeline inventory is divided between transportation and utility lifeline systems. There are seven (7) transportation systems that include highways, railways, light rail, bus, ports, ferry and airports. There are six (6) utility systems that include potable water, wastewater, natural gas, crude & refined oil, electric power and communications. The lifeline inventory data are provided in Tables 1 and 2.

The total value of the lifeline inventory is over 356.00 (millions of dollars). This inventory includes over 24.23 miles of highways, 19 bridges, 444.28 miles of pipes.

System	Component	# Locations/ # Segments	Replacement value (millions of dollars)
Highway	Bridges	19	116.7909
	Segments	11	200.7307
	Tunnels	0	0.0000
		Subtotal	317.5216
Railways	Bridges	1	0.0621
	Facilities	0	0.0000
	Segments	3	11.9909
	Tunnels	0	0.0000
		Subtotal	12.0530
Light Rail	Bridges	0	0.0000
	Facilities	1	2.6630
	Segments	2	9.2680
	Tunnels	0	0.0000
		Subtotal	11.9310
Bus	Facilities	1	1.2535
		Subtotal	1.2535
Ferry	Facilities	0	0.0000
-		Subtotal	0.0000
Port	Facilities	0	0.0000
		Subtotal	0.0000
Airport	Facilities	0	0.0000
	Runways	0	0.0000
		Subtotal	0.0000
		Total	342.80

System	Component	# Locations / Segments	Replacement value (millions of dollars)				
Potable Water	Distribution Lines	NA	7.1591				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	7.1591				
Waste Water	Distribution Lines	NA	4.2954				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	4.2954				
Natural Gas	Distribution Lines	NA	2.8636				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	2.8636				
Oil Systems	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	0.0000				
Electrical Power	Facilities	0	0.0000				
		Subtotal	0.0000				
Communication	Facilities	0	0.0000				
		Subtotal	0.0000				
		Total	14.30				

Table 2: Utility System Lifeline Inventory

Earthquake Scenario

Hazus uses the following set of information to define the earthquake parameters used for the earthquake loss estimate provided in this report.

Scenario Name	EastHaddam
Type of Earthquake	Arbitrary
Fault Name	NA
Historical Epicenter ID #	NA
Probabilistic Return Period	NA
Longitude of Epicenter	-72.40
Latitude of Epicenter	41.50
Earthquake Magnitude	6.40
Depth (km)	10.00
Rupture Length (Km)	NA
Rupture Orientation (degrees)	NA
Attenuation Function	Central & East US (CEUS 2008)

Direct Earthquake Damage

Building Damage

Hazus estimates that about 1,525 buildings will be at least moderately damaged. This is over 26.00 % of the buildings in the region. There are an estimated 242 buildings that will be damaged beyond repair. The definition of the 'damage states' is provided in Volume 1: Chapter 5 of the Hazus technical manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 below summarizes the expected damage by general building type.

Damage Categories by General Occupancy Type

Table 3: Expected Building Damage by Occupancy

	None		Slight		Moderate)	Extensiv	e	Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	2.31	0.09	4.07	0.25	9.55	1.06	7.51	1.95	5.57	2.29
Commercial	28.42	1.05	37.48	2.32	87.00	9.68	86.46	22.49	65.64	27.05
Education	0.93	0.03	1.16	0.07	2.76	0.31	2.94	0.77	2.21	0.91
Government	0.83	0.03	1.04	0.06	2.79	0.31	3.45	0.90	2.90	1.19
Industrial	8.77	0.32	11.70	0.72	32.43	3.61	40.41	10.51	34.69	14.30
Other Residential	111.92	4.14	86.58	5.36	106.73	11.88	124.23	32.31	107.54	44.33
Religion	5.49	0.20	3.73	0.23	3.89	0.43	3.02	0.79	1.87	0.77
Single Family	2543.84	94.13	1470.25	90.98	653.29	72.71	116.44	30.29	22.18	9.14
Total	2,703		1,616		898		384		243	

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Wood	2591.86	95.91	1490.79	92.25	655.09	72.92	103.11	26.82	12.91	5.32
Steel	8.66	0.32	13.30	0.82	54.51	6.07	84.30	21.93	77.64	32.00
Concrete	1.40	0.05	2.17	0.13	9.60	1.07	15.03	3.91	12.83	5.29
Precast	0.70	0.03	0.80	0.05	3.30	0.37	5.52	1.44	5.44	2.24
RM	6.87	0.25	4.89	0.30	15.26	1.70	19.90	5.18	12.00	4.95
URM	78.12	2.89	76.72	4.75	98.04	10.91	58.87	15.31	29.34	12.09
мн	14.90	0.55	27.32	1.69	62.62	6.97	97.73	25.42	92.44	38.10
Total	2,703		1,616		898		384		243	

Table 4: Expected Building Damage by Building Type (All Design Levels)

*Note:

RM Reinforced Masonry

URM Unreinforced Masonry

MH Manufactured Housing

Essential Facility Damage

Before the earthquake, the region had hospital beds available for use. On the day of the earthquake, the model estimates that only hospital beds (%) are available for use by patients already in the hospital and those injured by the earthquake. After one week, % of the beds will be back in service. By 30 days, % will be operational.

		# Facilities					
Classification	Total	At Least Moderate Damage > 50%	Complete Damage > 50%	With Functionality > 50% on day 1			
Hospitals	0	0	0	0			
Schools	5	5	0	0			
EOCs	1	1	0	0			
PoliceStations	1	1	0	0			
FireStations	2	2	0	0			

Table 5: Expected Damage to Essential Facilities

Transportation Lifeline Damage

			Number of Locations_						
System	Component	Locations/	With at Least	With Complete	With Fun	ctionality > 50 %			
		Segments	Mod. Damage	Damage	After Day 1	After Day 7			
Highway	Segments	11	0	0	11	11			
	Bridges	19	5	0	14	14			
	Tunnels	0	0	0	0	0			
Railways	Segments	3	0	0	1	1			
	Bridges	1	0	0	1	1			
	Tunnels	0	0	0	0	0			
	Facilities	0	0	0	0	0			
Light Rail	Segments	2	0	0	2	2			
	Bridges	0	0	0	0	0			
	Tunnels	0	0	0	0	0			
	Facilities	1	0	0	1	1			
Bus	Facilities	1	0	0	1	1			
Ferry	Facilities	0	0	0	0	0			
Port	Facilities	0	0	0	0	0			
Airport	Facilities	0	0	0	0	0			
	Runways	0	0	0	0	0			

Table 6: Expected Damage to the Transportation Systems

Table 6 provides damage estimates for the transportation system.

Note: Roadway segments, railroad tracks and light rail tracks are assumed to be damaged by ground failure only. If ground failure maps are not provided, damage estimates to these components will not be computed.

Tables 7-9 provide information on the damage to the utility lifeline systems. Table 7 provides damage to the utility system facilities. Table 8 provides estimates on the number of leaks and breaks by the pipelines of the utility systems. For electric power and potable water, Hazus performs a simplified system performance analysis. Table 9 provides a summary of the system performance information.

	# of Locations								
System	Total #	With at Least	With Complete	with Function	ality > 50 %				
		Moderate Damage	Damage	After Day 1	After Day 7				
Potable Water	0	0	0	0	0				
Waste Water	0	0	0	0	0				
Natural Gas	0	0	0	0	0				
Oil Systems	0	0	0	0	0				
Electrical Power	0	0	0	0	0				
Communication	0	0	0	0	0				

Table 7 : Expected Utility System Facility Damage

Table 8 : Expected Utility System Pipeline Damage (Site Specific)

System	Total Pipelines Length (miles)	Number of Leaks	Number of Breaks
Potable Water	222	0	0
Waste Water	133	0	0
Natural Gas	89	0	0
Oil	0	0	0

Table 9: Expected Potable Water and Electric Power System Performance

	Total # of	Number of Households without Service				
	Households	At Day 1	At Day 3	At Day 7	At Day 30	At Day 90
Potable Water						
Electric Power						

Induced Earthquake Damage

Fire Following Earthquake

Fires often occur after an earthquake. Because of the number of fires and the lack of water to fight the fires, they can often burn out of control. Hazus uses a Monte Carlo simulation model to estimate the number of ignitions and the amount of burnt area. For this scenario, the model estimates that there will be 0 ignitions that will burn about 0.00 sq. mi 0.00 % of the region's total area.) The model also estimates that the fires will displace about 0 people and burn about 0 (millions of dollars) of building value.

Debris Generation

Hazus estimates the amount of debris that will be generated by the earthquake. The model breaks the debris into two general categories: a) Brick/Wood and b) Reinforced Concrete/Steel. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 87,000 tons of debris will be generated. Of the total amount, Brick/Wood comprises 33.00% of the total, with the remainder being Reinforced Concrete/Steel. If the debris tonnage is converted to an estimated number of truckloads, it will require 3,480 truckloads (@25 tons/truck) to remove the debris generated by the earthquake.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the earthquake and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 215 households to be displaced due to the earthquake. Of these, 105 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Casualties

Hazus estimates the number of people that will be injured and killed by the earthquake. The casualties are broken down into four (4) severity levels that describe the extent of the injuries. The levels are described as follows;

Injuries will require medical attention but hospitalization is not needed. Injuries will require hospitalization but are not considered life-threatening

Injuries will require hospitalization and can become life threatening if not

- Severity Level 1:
- · Severity Level 2:
- · Severity Level 3:
 - promptly treated.
- · Severity Level 4: Victims are killed by the earthquake.

The casualty estimates are provided for three (3) times of day: 2:00 AM, 2:00 PM and 5:00 PM. These times represent the periods of the day that different sectors of the community are at their peak occupancy loads. The 2:00 AM estimate considers that the residential occupancy load is maximum, the 2:00 PM estimate considers that the educational, commercial and industrial sector loads are maximum and 5:00 PM represents peak commute time.

Table 10 provides a summary of the casualties estimated for this earthquake

Table 10: Casualty Estimates

		Level 1	Level 2	Level 3	Level 4
2 AM	Commercial	2.40	0.68	0.10	0.20
	Commuting	0.01	0.01	0.02	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	4.25	1.25	0.19	0.38
	Other-Residential	23.48	6.14	0.74	1.41
	Single Family	15.39	2.85	0.32	0.62
	Total	46	11	1	3
2 PM	Commercial	133.54	37.97	5.71	11.14
	Commuting	0.08	0.11	0.19	0.04
	Educational	48.91	14.45	2.35	4.58
	Hotels	0.00	0.00	0.00	0.00
	Industrial	31.41	9.22	1.44	2.80
	Other-Residential	4.04	1.07	0.14	0.25
	Single Family	2.71	0.52	0.06	0.11
	Total	221	63	10	19
					7.04
5 PM	Commercial	95.50	27.14	4.12	7.91
	Commuting	1.95	2.56	4.37	0.84
	Educational	3.39	1.01	0.16	0.32
	Hotels	0.00	0.00	0.00	0.00
	Industrial	19.63	5.76	0.90	1.75
	Other-Residential	8.81	2.31	0.29	0.53
	Single Family	6.07	1.16	0.14	0.26
	Total	135	40	10	12

Economic Loss

The total economic loss estimated for the earthquake is 372.78 (millions of dollars), which includes building and lifeline related losses based on the region's available inventory. The following three sections provide more detailed information about these losses.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the earthquake. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the earthquake.

The total building-related losses were 347.52 (millions of dollars); 18 % of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 40 % of the total loss. Table 11 below provides a summary of the losses associated with the building damage.

Table 11: Building-Related Economic Loss Estimates (Millions of dollars)

Category	Area	Single Family	Other Residential	Commercial	Industrial	Others	Total
Income Loss	es						
	Wage	0.0000	0.4359	13.4362	0.8329	0.7113	15.4163
	Capital-Related	0.0000	0.1861	11.3637	0.5060	0.1345	12.1903
	Rental	1.6318	2.2417	7.1786	0.2611	0.2560	11.5692
	Relocation	5.8328	2.0998	10.5056	1.4431	1.9482	21.8295
	Subtotal	7.4646	4.9635	42.4841	3.0431	3.0500	61.0053
Capital Stoc	k Losses						
	Structural	12.7619	5.4927	21.3905	6.7866	3.7576	50.1893
	Non_Structural	60.0124	22.5297	53.3646	22.1843	8.6437	166.7347
	Content	21.5026	4.8679	23.3071	13.1105	3.8521	66.6402
	Inventory	0.0000	0.0000	0.7619	2.1057	0.0873	2.9549
	Subtotal	94.2769	32.8903	98.8241	44.1871	16.3407	286.5191
	Total	101.74	37.85	141.31	47.23	19.39	347.52

Transportation and Utility Lifeline Losses

For the transportation and utility lifeline systems, Hazus computes the direct repair cost for each component only. There are no losses computed by Hazus for business interruption due to lifeline outages. Tables 12 & 13 provide a detailed breakdown in the expected lifeline losses.

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Highway	Segments	200.7307	0.0000	0.00
	Bridges	116.7909	24.2861	20.79
	Tunnels	0.0000	0.0000	0.00
	Subtotal	317.5216	24.2861	
Railways	Segments	11.9909	0.0000	0.00
	Bridges	0.0621	0.0019	3.06
	Tunnels	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	12.0530	0.0019	
Light Rail	Segments	9.2680	0.0000	0.00
	Bridges	0.0000	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	2.6630	0.6558	24.63
	Subtotal	11.9310	0.6558	
Bus	Facilities	1.2535	0.3103	24.75
	Subtotal	1.2535	0.3103	
Ferry	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Port	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Airport	Facilities	0.0000	0.0000	0.00
	Runways	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
l	Total	342.76	25.25	

Table 12: Transportation System Economic Losses

(Millions of dollars)

Table 13: Utility System Economic Losses

(Millions of dollars)

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Potable Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	7.1591	0.0000	0.00
	Subtotal	7.1591	0.0000	
Waste Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	4.2954	0.0000	0.00
	Subtotal	4.2954	0.0000	
Natural Gas	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	2.8636	0.0000	0.00
	Subtotal	2.8636	0.0000	
Oil Systems	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Electrical Power	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Communication	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
	Total	14.32	0.00	

Appendix A: County Listing for the Region

Middlesex,CT

Appendix B: Regional Population and Building Value Data

			Building Value (millions of dollars)					
State	County Name	Population	Residential	Non-Residential	Total			
Connecticut								
	Middlesex	13,260	1,661	400	2,061			
Total Region		13,260	1,661	400	2,061			

Hazus: Earthquake Global Risk Report

Region Name:	Clinton		
Earthquake Scenario:	Haddam		
Print Date:	October 16, 2019		

Disclaimer: This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, geotechnical, and observed ground motion data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building and Lifeline Inventory	4	
Building Inventory		
Critical Facility Inventory		
Transportation and Utility Lifeline Inventory		
Earthquake Scenario Parameters	7	
Direct Earthquake Damage	8	
Buildings Damage		
Essential Facilities Damage		
Transportation and Utility Lifeline Damage		
Induced Earthquake Damage	14	
Fire Following Earthquake		
Debris Generation		
Social Impact	15	
Shelter Requirements		
Casualties		
Economic Loss	17	
Building Related Losses		
Transportation and Utility Lifeline Losses		

Appendix A: County Listing for the Region Appendix B: Regional Population and Building Value Data

General Description of the Region

Hazus-MH is a regional earthquake loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The earthquake loss estimates provided in this report was based on a region that includes 1 county(ies) from the following state(s):

Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.38 square miles and contains 4 census tracts. There are over 5 thousand households in the region which has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by Total Region and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,061 (millions of dollars). Approximately 91.00 % of the buildings (and 81.00% of the building value) are associated with residential housing.

The replacement value of the transportation and utility lifeline systems is estimated to be 342 and 14 (millions of dollars), respectively.

Building and Lifeline Inventory

Building Inventory

Hazus estimates that there are 5 thousand buildings in the region which have an aggregate total replacement value of 2,061 (millions of dollars). Appendix B provides a general distribution of the building value by Total Region and County.

In terms of building construction types found in the region, wood frame construction makes up 83% of the building inventory. The remaining percentage is distributed between the other general building types.

Critical Facility Inventory

Hazus breaks critical facilities into two (2) groups: essential facilities and high potential loss facilities (HPL). Essential facilities include hospitals, medical clinics, schools, fire stations, police stations and emergency operations facilities. High potential loss facilities include dams, levees, military installations, nuclear power plants and hazardous material sites.

For essential facilities, there are 0 hospitals in the region with a total bed capacity of beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities. With respect to high potential loss facilities (HPL), there are no dams identified within the inventory. The inventory also includes 3 hazardous material sites, no military installations and no nuclear power plants.

Transportation and Utility Lifeline Inventory

Within Hazus, the lifeline inventory is divided between transportation and utility lifeline systems. There are seven (7) transportation systems that include highways, railways, light rail, bus, ports, ferry and airports. There are six (6) utility systems that include potable water, wastewater, natural gas, crude & refined oil, electric power and communications. The lifeline inventory data are provided in Tables 1 and 2.

The total value of the lifeline inventory is over 356.00 (millions of dollars). This inventory includes over 24.23 miles of highways, 19 bridges, 444.28 miles of pipes.

System	Component	# Locations/ # Segments	Replacement value (millions of dollars)
Highway	Bridges	19	116.7909
5	Segments	11	200.7307
	Tunnels	0	0.0000
		Subtotal	317.5216
Railways	Bridges	1	0.0621
	Facilities	0	0.0000
	Segments	3	11.9909
	Tunnels	0	0.0000
		Subtotal	12.0530
Light Rail	Bridges	0	0.0000
	Facilities	1	2.6630
	Segments	2	9.2680
	Tunnels	0	0.0000
		Subtotal	11.9310
Bus	Facilities	1	1.2535
		Subtotal	1.2535
Ferry	Facilities	0	0.0000
-		Subtotal	0.0000
Port	Facilities	0	0.0000
		Subtotal	0.0000
Airport	Facilities	0	0.0000
	Runways	0	0.0000
		Subtotal	0.0000
		Total	342.80

System	Component	# Locations / Segments	Replacement value (millions of dollars)				
Potable Water	Distribution Lines	NA	7.1591				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	7.1591				
Waste Water	Distribution Lines	NA	4.2954				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	4.2954				
Natural Gas	Distribution Lines	NA	2.8636				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	2.8636				
Oil Systems	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	0.0000				
Electrical Power	Facilities	0	0.0000				
		Subtotal	0.0000				
Communication	Facilities	0	0.0000				
		Subtotal	0.0000				
		Total	14.30				

Table 2: Utility System Lifeline Inventory

Earthquake Scenario

Hazus uses the following set of information to define the earthquake parameters used for the earthquake loss estimate provided in this report.

Scenario Name	Haddam
Type of Earthquake	Arbitrary
Fault Name	NA
Historical Epicenter ID #	NA
Probabilistic Return Period	NA
Longitude of Epicenter	-72.50
Latitude of Epicenter	41.50
Earthquake Magnitude	5.70
Depth (km)	10.00
Rupture Length (Km)	NA
Rupture Orientation (degrees)	NA
Attenuation Function	Central & East US (CEUS 2008)

Direct Earthquake Damage

Building Damage

Hazus estimates that about 781 buildings will be at least moderately damaged. This is over 13.00 % of the buildings in the region. There are an estimated 46 buildings that will be damaged beyond repair. The definition of the 'damage states' is provided in Volume 1: Chapter 5 of the Hazus technical manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 below summarizes the expected damage by general building type.

Damage Categories by General Occupancy Type

Table 3: Expected Building Damage by Occupancy

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	10.69	0.28	7.28	0.61	7.21	1.30	2.96	1.63	0.86	1.86
Commercial	114.26	2.95	66.56	5.59	78.82	14.23	35.63	19.61	9.73	21.09
Education	3.67	0.09	2.11	0.18	2.68	0.48	1.20	0.66	0.34	0.73
Government	3.75	0.10	2.17	0.18	3.09	0.56	1.55	0.85	0.45	0.97
Industrial	40.85	1.05	25.21	2.12	36.90	6.66	19.29	10.62	5.75	12.46
Other Residential	212.66	5.49	96.78	8.13	123.68	22.32	80.55	44.33	23.34	50.58
Religion	10.08	0.26	3.57	0.30	2.94	0.53	1.16	0.64	0.25	0.55
Single Family	3476.34	89.77	986.17	82.88	298.70	53.92	39.37	21.67	5.43	11.76
Total	3,872		1,190		554		182		46	

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Wood	3538.35	91.38	1000.03	84.05	286.45	51.71	27.22	14.98	1.72	3.72
Steel	64.19	1.66	43.13	3.63	75.78	13.68	42.04	23.14	13.26	28.73
Concrete	11.35	0.29	7.32	0.61	13.59	2.45	6.91	3.80	1.87	4.05
Precast	5.49	0.14	2.40	0.20	4.36	0.79	3.02	1.66	0.50	1.09
RM	31.03	0.80	8.83	0.74	12.48	2.25	6.19	3.41	0.40	0.86
URM	164.04	4.24	78.05	6.56	66.40	11.99	25.51	14.04	7.09	15.36
МН	57.83	1.49	50.08	4.21	94.95	17.14	70.83	38.98	21.32	46.19
Total	3,872		1,190		554		182		46	

Table 4: Expected Building Damage by Building Type (All Design Levels)

*Note:

RM Reinforced Masonry

URM Unreinforced Masonry

MH Manufactured Housing

Essential Facility Damage

Before the earthquake, the region had hospital beds available for use. On the day of the earthquake, the model estimates that only hospital beds (%) are available for use by patients already in the hospital and those injured by the earthquake. After one week, % of the beds will be back in service. By 30 days, % will be operational.

		# Facilities			
Classification	Total	At Least Moderate Damage > 50%	Complete Damage > 50%	With Functionality > 50% on day 1	
Hospitals	0	0	0	0	
Schools	5	0	0	0	
EOCs	1	0	0	0	
PoliceStations	1	0	0	0	
FireStations	2	0	0	0	

Table 5: Expected Damage to Essential Facilities

Transportation Lifeline Damage

	Component		Number of Locations_					
System		Locations/	With at Least	With Complete	With Functionality > 50 %			
		Segments	Mod. Damage	Damage	After Day 1	After Day 7		
Highway	Segments	11	0	0	11	11		
	Bridges	19	0	0	19	19		
	Tunnels	0	0	0	0	0		
Railways	Segments	3	0	0	1	1		
	Bridges	1	0	0	1	1		
	Tunnels	0	0	0	0	0		
	Facilities	0	0	0	0	0		
Light Rail	Segments	2	0	0	2	2		
	Bridges	0	0	0	0	0		
	Tunnels	0	0	0	0	0		
	Facilities	1	0	0	1	1		
Bus	Facilities	1	0	0	1	1		
Ferry	Facilities	0	0	0	0	0		
Port	Facilities	0	0	0	0	0		
Airport	Facilities	0	0	0	0	0		
	Runways	0	0	0	0	0		

Table 6: Expected Damage to the Transportation Systems

Table 6 provides damage estimates for the transportation system.

Note: Roadway segments, railroad tracks and light rail tracks are assumed to be damaged by ground failure only. If ground failure maps are not provided, damage estimates to these components will not be computed.

Tables 7-9 provide information on the damage to the utility lifeline systems. Table 7 provides damage to the utility system facilities. Table 8 provides estimates on the number of leaks and breaks by the pipelines of the utility systems. For electric power and potable water, Hazus performs a simplified system performance analysis. Table 9 provides a summary of the system performance information.

System	# of Locations						
	Total # With at Least Moderate Damage	With at Least	With Complete	with Functionality > 50 %			
		Damage	After Day 1	After Day 7			
Potable Water	0	0	0	0	0		
Waste Water	0	0	0	0	0		
Natural Gas	0	0	0	0	0		
Oil Systems	0	0	0	0	0		
Electrical Power	0	0	0	0	0		
Communication	0	0	0	0	0		

Table 7 : Expected Utility System Facility Damage

Table 8 : Expected Utility System Pipeline Damage (Site Specific)

System	Total Pipelines Length (miles)	Number of Leaks	Number of Breaks
Potable Water	222	0	0
Waste Water	133	0	0
Natural Gas	89	0	0
Oil	0	0	0

Table 9: Expected Potable Water and Electric Power System Performance

	Total # of		Number of Households without Service			
	Households	At Day 1	At Day 3	At Day 7	At Day 30	At Day 90
Potable Water						
Electric Power						

Induced Earthquake Damage

Fire Following Earthquake

Fires often occur after an earthquake. Because of the number of fires and the lack of water to fight the fires, they can often burn out of control. Hazus uses a Monte Carlo simulation model to estimate the number of ignitions and the amount of burnt area. For this scenario, the model estimates that there will be 0 ignitions that will burn about 0.00 sq. mi 0.00 % of the region's total area.) The model also estimates that the fires will displace about 0 people and burn about 0 (millions of dollars) of building value.

Debris Generation

Hazus estimates the amount of debris that will be generated by the earthquake. The model breaks the debris into two general categories: a) Brick/Wood and b) Reinforced Concrete/Steel. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 26,000 tons of debris will be generated. Of the total amount, Brick/Wood comprises 40.00% of the total, with the remainder being Reinforced Concrete/Steel. If the debris tonnage is converted to an estimated number of truckloads, it will require 1,040 truckloads (@25 tons/truck) to remove the debris generated by the earthquake.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the earthquake and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 60 households to be displaced due to the earthquake. Of these, 29 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Casualties

Hazus estimates the number of people that will be injured and killed by the earthquake. The casualties are broken down into four (4) severity levels that describe the extent of the injuries. The levels are described as follows;

Injuries will require medical attention but hospitalization is not needed.

Injuries will require hospitalization but are not considered life-threatening

Injuries will require hospitalization and can become life threatening if not

- Severity Level 1:
- Severity Level 2:
- · Severity Level 3:
 - promptly treated.
- Severity Level 4: Victims are killed by the earthquake.

The casualty estimates are provided for three (3) times of day: 2:00 AM, 2:00 PM and 5:00 PM. These times represent the periods of the day that different sectors of the community are at their peak occupancy loads. The 2:00 AM estimate considers that the residential occupancy load is maximum, the 2:00 PM estimate considers that the educational, commercial and industrial sector loads are maximum and 5:00 PM represents peak commute time.

Table 10 provides a summary of the casualties estimated for this earthquake

Table 10: Casualty Estimates

		Level 1	Level 2	Level 3	Level 4
2 AM	Commercial	0.55	0.13	0.02	0.03
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	1.06	0.26	0.03	0.07
	Other-Residential	6.50	1.32	0.12	0.22
	Single Family	5.82	0.85	0.08	0.16
	Total	14	3	0	0
2 PM	Commercial	30.53	7.01	0.90	1.75
	Commuting	0.02	0.02	0.04	0.01
	Educational	11.31	2.73	0.39	0.76
	Hotels	0.00	0.00	0.00	0.00
	Industrial	7.85	1.90	0.26	0.50
	Other-Residential	1.09	0.22	0.02	0.04
	Single Family	1.00	0.15	0.02	0.03
	Total	52	12	2	3
5 PM	Commercial	21.89	5.05	0.66	1.26
	Commuting	0.38	0.47	0.83	0.16
	Educational	0.80	0.19	0.03	0.05
	Hotels	0.00	0.00	0.00	0.00
	Industrial	4.91	1.19	0.16	0.31
	Other-Residential	2.42	0.49	0.05	0.08
	Single Family	2.27	0.35	0.04	0.06
	Total	33	8	2	2

Economic Loss

The total economic loss estimated for the earthquake is 127.63 (millions of dollars), which includes building and lifeline related losses based on the region's available inventory. The following three sections provide more detailed information about these losses.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the earthquake. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the earthquake.

The total building-related losses were 120.01 (millions of dollars); 18 % of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 51 % of the total loss. Table 11 below provides a summary of the losses associated with the building damage.

Table 11: Building-Related Economic Loss Estimates (Millions of dollars)

	1						
Category	Area	Single Family	Other Residential	Commercial	Industrial	Others	Total
Income Loss	es						
	Wage	0.0000	0.1252	4.5266	0.2729	0.2334	5.1581
	Capital-Related	0.0000	0.0534	3.7080	0.1678	0.0433	3.9725
	Rental	0.6702	0.7435	2.6660	0.0977	0.0868	4.2642
	Relocation	2.3587	0.9084	4.0084	0.6208	0.6881	8.5844
	Subtotal	3.0289	1.8305	14.9090	1.1592	1.0516	21.9792
Capital Stock	Losses						
	Structural	5.5166	1.9239	6.6373	2.1331	1.1503	17.3612
	Non_Structural	28.6398	7.2342	13.3543	5.3427	2.2674	56.8384
	Content	11.2487	1.6364	6.0011	3.1799	1.0446	23.1107
	Inventory	0.0000	0.0000	0.1981	0.5026	0.0232	0.7239
	Subtotal	45.4051	10.7945	26.1908	11.1583	4.4855	98.0342
	Total	48.43	12.63	41.10	12.32	5.54	120.01

Transportation and Utility Lifeline Losses

For the transportation and utility lifeline systems, Hazus computes the direct repair cost for each component only. There are no losses computed by Hazus for business interruption due to lifeline outages. Tables 12 & 13 provide a detailed breakdown in the expected lifeline losses.

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Highway	Segments	200.7307	0.0000	0.00
	Bridges	116.7909	6.9779	5.97
	Tunnels	0.0000	0.0000	0.00
	Subtotal	317.5216	6.9779	
Railways	Segments	11.9909	0.0000	0.00
	Bridges	0.0621	0.0002	0.32
	Tunnels	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	12.0530	0.0002	
Light Rail	Segments	9.2680	0.0000	0.00
	Bridges	0.0000	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	2.6630	0.4246	15.94
	Subtotal	11.9310	0.4246	
Bus	Facilities	1.2535	0.2098	16.74
	Subtotal	1.2535	0.2098	
Ferry	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Port	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Airport	Facilities	0.0000	0.0000	0.00
	Runways	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
l	Total	342.76	7.61	

Table 12: Transportation System Economic Losses

(Millions of dollars)

Table 13: Utility System Economic Losses

(Millions of dollars)

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Potable Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	7.1591	0.0000	0.00
	Subtotal	7.1591	0.0000	
Waste Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	4.2954	0.0000	0.00
	Subtotal	4.2954	0.0000	
Natural Gas	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	2.8636	0.0000	0.00
	Subtotal	2.8636	0.0000	
Oil Systems	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Electrical Power	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Communication	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
	Total	14.32	0.00	

Appendix A: County Listing for the Region

Middlesex,CT

Appendix B: Regional Population and Building Value Data

			Building Value (millions of dollars)				
State	County Name	Population	Residential	Non-Residential	Total		
Connecticut							
	Middlesex	13,260	1,661	400	2,061		
Total Region		13,260	1,661	400	2,061		

Hazus: Earthquake Global Risk Report

Region Name:	Clinton
Earthquake Scenario:	Portland
Print Date:	October 16, 2019

Disclaimer: This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, geotechnical, and observed ground motion data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building and Lifeline Inventory	4	
Building Inventory		
Critical Facility Inventory		
Transportation and Utility Lifeline Inventory		
Earthquake Scenario Parameters	7	
Direct Earthquake Damage	8	
Buildings Damage		
Essential Facilities Damage		
Transportation and Utility Lifeline Damage		
Induced Earthquake Damage	14	
Fire Following Earthquake		
Debris Generation		
Social Impact	15	
Shelter Requirements		
Casualties		
Economic Loss	17	
Building Related Losses		
Transportation and Utility Lifeline Losses		

Appendix A: County Listing for the Region Appendix B: Regional Population and Building Value Data

General Description of the Region

Hazus-MH is a regional earthquake loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The earthquake loss estimates provided in this report was based on a region that includes 1 county(ies) from the following state(s):

Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.38 square miles and contains 4 census tracts. There are over 5 thousand households in the region which has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by Total Region and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,061 (millions of dollars). Approximately 91.00 % of the buildings (and 81.00% of the building value) are associated with residential housing.

The replacement value of the transportation and utility lifeline systems is estimated to be 342 and 14 (millions of dollars), respectively.

Building and Lifeline Inventory

Building Inventory

Hazus estimates that there are 5 thousand buildings in the region which have an aggregate total replacement value of 2,061 (millions of dollars). Appendix B provides a general distribution of the building value by Total Region and County.

In terms of building construction types found in the region, wood frame construction makes up 83% of the building inventory. The remaining percentage is distributed between the other general building types.

Critical Facility Inventory

Hazus breaks critical facilities into two (2) groups: essential facilities and high potential loss facilities (HPL). Essential facilities include hospitals, medical clinics, schools, fire stations, police stations and emergency operations facilities. High potential loss facilities include dams, levees, military installations, nuclear power plants and hazardous material sites.

For essential facilities, there are 0 hospitals in the region with a total bed capacity of beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities. With respect to high potential loss facilities (HPL), there are no dams identified within the inventory. The inventory also includes 3 hazardous material sites, no military installations and no nuclear power plants.

Transportation and Utility Lifeline Inventory

Within Hazus, the lifeline inventory is divided between transportation and utility lifeline systems. There are seven (7) transportation systems that include highways, railways, light rail, bus, ports, ferry and airports. There are six (6) utility systems that include potable water, wastewater, natural gas, crude & refined oil, electric power and communications. The lifeline inventory data are provided in Tables 1 and 2.

The total value of the lifeline inventory is over 356.00 (millions of dollars). This inventory includes over 24.23 miles of highways, 19 bridges, 444.28 miles of pipes.

System	Component	# Locations/ # Segments	Replacement value (millions of dollars)
Highway	Bridges	19	116.7909
	Segments	11	200.7307
	Tunnels	0	0.0000
		Subtotal	317.5216
Railways	Bridges	1	0.0621
	Facilities	0	0.0000
	Segments	3	11.9909
	Tunnels	0	0.0000
		Subtotal	12.0530
Light Rail	Bridges	0	0.0000
	Facilities	1	2.6630
	Segments	2	9.2680
	Tunnels	0	0.0000
		Subtotal	11.9310
Bus	Facilities	1	1.2535
		Subtotal	1.2535
Ferry	Facilities	0	0.0000
-		Subtotal	0.0000
Port	Facilities	0	0.0000
		Subtotal	0.0000
Airport	Facilities	0	0.0000
	Runways	0	0.0000
		Subtotal	0.0000
		Total	342.80

System	Component	# Locations / Segments	Replacement value (millions of dollars)					
Potable Water	Distribution Lines	NA	7.1591					
	Facilities	0	0.0000					
	Pipelines	0	0.0000					
		Subtotal	7.1591					
Waste Water	Distribution Lines	NA	4.2954					
	Facilities	0	0.0000					
	Pipelines	0	0.0000					
		Subtotal	4.2954					
Natural Gas	Distribution Lines	NA	2.8636					
	Facilities	0	0.0000					
	Pipelines	0	0.0000					
		Subtotal	2.8636					
Oil Systems	Facilities	0	0.0000					
	Pipelines	0	0.0000					
		Subtotal	0.0000					
Electrical Power	Facilities	0	0.0000					
		Subtotal	0.0000					
Communication	Facilities	0	0.0000					
		Subtotal	0.0000					
		Total	14.30					

Table 2: Utility System Lifeline Inventory

Earthquake Scenario

Hazus uses the following set of information to define the earthquake parameters used for the earthquake loss estimate provided in this report.

Scenario Name	Portland
Type of Earthquake	Arbitrary
Fault Name	NA
Historical Epicenter ID #	NA
Probabilistic Return Period	NA
Longitude of Epicenter	-72.60
Latitude of Epicenter	41.60
Earthquake Magnitude	5.70
Depth (km)	10.00
Rupture Length (Km)	NA
Rupture Orientation (degrees)	NA
Attenuation Function	Central & East US (CEUS 2008)

Direct Earthquake Damage

Building Damage

Hazus estimates that about 293 buildings will be at least moderately damaged. This is over 5.00 % of the buildings in the region. There are an estimated 4 buildings that will be damaged beyond repair. The definition of the 'damage states' is provided in Volume 1: Chapter 5 of the Hazus technical manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 below summarizes the expected damage by general building type.

Damage Categories by General Occupancy Type

Table 3: Expected Building Damage by Occupancy

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	20.26	0.42	5.16	0.73	2.85	1.14	0.66	1.71	0.07	1.72
Commercial	209.06	4.32	51.53	7.25	35.36	14.08	7.98	20.76	1.07	25.62
Education	6.85	0.14	1.67	0.24	1.19	0.47	0.24	0.63	0.04	0.95
Government	7.38	0.15	1.84	0.26	1.43	0.57	0.31	0.80	0.04	1.07
Industrial	84.32	1.74	21.87	3.08	17.32	6.90	3.94	10.25	0.55	13.15
Other Residential	351.78	7.27	94.21	13.26	77.38	30.82	12.62	32.84	1.01	24.08
Religion	13.67	0.28	2.49	0.35	1.46	0.58	0.34	0.87	0.05	1.13
Single Family	4146.44	85.67	531.77	74.84	114.09	45.44	12.35	32.13	1.35	32.27
Total	4,840		711		251		38		4	

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Wood	4218.75	87.17	529.73	74.55	98.48	39.22	6.56	17.08	0.25	6.10
Steel	151.33	3.13	41.30	5.81	36.46	14.52	8.15	21.20	1.16	27.83
Concrete	26.98	0.56	6.90	0.97	6.04	2.41	1.00	2.60	0.10	2.50
Precast	10.60	0.22	2.12	0.30	2.27	0.90	0.77	2.01	0.03	0.61
RM	46.40	0.96	5.95	0.84	5.21	2.07	1.36	3.53	0.02	0.38
URM	229.94	4.75	59.96	8.44	38.59	15.37	10.64	27.68	1.95	46.58
МН	155.75	3.22	64.60	9.09	64.02	25.50	9.96	25.91	0.67	16.00
Total	4,840		711		251		38		4	

Table 4: Expected Building Damage by Building Type (All Design Levels)

*Note:

RM Reinforced Masonry

URM Unreinforced Masonry

MH Manufactured Housing

Essential Facility Damage

Before the earthquake, the region had hospital beds available for use. On the day of the earthquake, the model estimates that only hospital beds (%) are available for use by patients already in the hospital and those injured by the earthquake. After one week, % of the beds will be back in service. By 30 days, % will be operational.

		# Facilities			
Classification	Total	At Least Moderate Damage > 50%	Complete Damage > 50%	With Functionality > 50% on day 1	
Hospitals	0	0	0	0	
Schools	5	0	0	5	
EOCs	1	0	0	1	
PoliceStations	1	0	0	1	
FireStations	2	0	0	2	

Table 5: Expected Damage to Essential Facilities

Transportation Lifeline Damage

	•		Number of Locations_				
System	Component	Locations/	With at Least	With Complete	With Fun	ctionality > 50 %	
		Segments	Mod. Damage	Damage	After Day 1	After Day 7	
Highway	Segments	11	0	0	11	11	
	Bridges	19	0	0	19	19	
	Tunnels	0	0	0	0	0	
Railways	Segments	3	0	0	1	1	
	Bridges	1	0	0	1	1	
	Tunnels	0	0	0	0	0	
	Facilities	0	0	0	0	0	
Light Rail	Segments	2	0	0	2	2	
	Bridges	0	0	0	0	0	
	Tunnels	0	0	0	0	0	
	Facilities	1	0	0	1	1	
Bus	Facilities	1	0	0	1	1	
Ferry	Facilities	0	0	0	0	0	
Port	Facilities	0	0	0	0	0	
Airport	Facilities	0	0	0	0	0	
	Runways	0	0	0	0	0	

Table 6: Expected Damage to the Transportation Systems

Table 6 provides damage estimates for the transportation system.

Note: Roadway segments, railroad tracks and light rail tracks are assumed to be damaged by ground failure only. If ground failure maps are not provided, damage estimates to these components will not be computed.

Tables 7-9 provide information on the damage to the utility lifeline systems. Table 7 provides damage to the utility system facilities. Table 8 provides estimates on the number of leaks and breaks by the pipelines of the utility systems. For electric power and potable water, Hazus performs a simplified system performance analysis. Table 9 provides a summary of the system performance information.

	# of Locations						
System	Total #	With at Least	With Complete	with Function	ality > 50 %		
		Moderate Damage	Damage	After Day 1	After Day 7		
Potable Water	0	0	0	0	0		
Waste Water	0	0	0	0	0		
Natural Gas	0	0	0	0	0		
Oil Systems	0	0	0	0	0		
Electrical Power	0	0	0	0	0		
Communication	0	0	0	0	0		

Table 7 : Expected Utility System Facility Damage

Table 8 : Expected Utility System Pipeline Damage (Site Specific)

System	Total Pipelines Length (miles)	Number of Leaks	Number of Breaks
Potable Water	222	0	0
Waste Water	133	0	0
Natural Gas	89	0	0
Oil	0	0	0

Table 9: Expected Potable Water and Electric Power System Performance

	Total # of		Number of Ho	ouseholds without Service		
	Households	At Day 1	At Day 3	At Day 7	At Day 30	At Day 90
Potable Water						
Electric Power						

Induced Earthquake Damage

Fire Following Earthquake

Fires often occur after an earthquake. Because of the number of fires and the lack of water to fight the fires, they can often burn out of control. Hazus uses a Monte Carlo simulation model to estimate the number of ignitions and the amount of burnt area. For this scenario, the model estimates that there will be 0 ignitions that will burn about 0.00 sq. mi 0.00 % of the region's total area.) The model also estimates that the fires will displace about 0 people and burn about 0 (millions of dollars) of building value.

Debris Generation

Hazus estimates the amount of debris that will be generated by the earthquake. The model breaks the debris into two general categories: a) Brick/Wood and b) Reinforced Concrete/Steel. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 7,000 tons of debris will be generated. Of the total amount, Brick/Wood comprises 54.00% of the total, with the remainder being Reinforced Concrete/Steel. If the debris tonnage is converted to an estimated number of truckloads, it will require 280 truckloads (@25 tons/truck) to remove the debris generated by the earthquake.

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the earthquake and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 15 households to be displaced due to the earthquake. Of these, 7 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Casualties

Hazus estimates the number of people that will be injured and killed by the earthquake. The casualties are broken down into four (4) severity levels that describe the extent of the injuries. The levels are described as follows;

Injuries will require medical attention but hospitalization is not needed.

Injuries will require hospitalization but are not considered life-threatening

Injuries will require hospitalization and can become life threatening if not

- Severity Level 1:
- Severity Level 2:
- · Severity Level 3:
 - promptly treated.
- · Severity Level 4: Victims are killed by the earthquake.

The casualty estimates are provided for three (3) times of day: 2:00 AM, 2:00 PM and 5:00 PM. These times represent the periods of the day that different sectors of the community are at their peak occupancy loads. The 2:00 AM estimate considers that the residential occupancy load is maximum, the 2:00 PM estimate considers that the educational, commercial and industrial sector loads are maximum and 5:00 PM represents peak commute time.

Table 10 provides a summary of the casualties estimated for this earthquake

Table 10: Casualty Estimates

		Level 1	Level 2	Level 3	Level 4
2 AM	Commercial	0.12	0.02	0.00	0.00
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.19	0.03	0.00	0.01
	Other-Residential	1.39	0.21	0.02	0.03
	Single Family	2.14	0.26	0.02	0.04
	Total	4	1	0	0
2 PM	Commercial	6.44	1.13	0.12	0.23
	Commuting	0.00	0.00	0.01	0.00
	Educational	2.28	0.42	0.05	0.09
	Hotels	0.00	0.00	0.00	0.00
	Industrial	1.40	0.25	0.03	0.05
	Other-Residential	0.24	0.04	0.00	0.01
	Single Family	0.37	0.05	0.00	0.01
	Total	11	2	0	0
5 PM	Commercial	4.59	0.81	0.09	0.17
	Commuting	0.06	0.08	0.14	0.03
	Educational	0.16	0.03	0.00	0.01
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.87	0.16	0.02	0.03
	Other-Residential	0.53	0.08	0.01	0.01
	Single Family	0.83	0.10	0.01	0.02
	Total	7	1	0	0

Economic Loss

The total economic loss estimated for the earthquake is 40.05 (millions of dollars), which includes building and lifeline related losses based on the region's available inventory. The following three sections provide more detailed information about these losses.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the earthquake. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the earthquake.

The total building-related losses were 37.80 (millions of dollars); 18 % of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 57 % of the total loss. Table 11 below provides a summary of the losses associated with the building damage.

Table 11: Building-Related Economic Loss Estimates

Category	Area	Single Family	Other Residential	Commercial	Industrial	Others	Total
Income Loss	es						
	Wage	0.0000	0.0320	1.3082	0.0706	0.0698	1.4806
	Capital-Related	0.0000	0.0136	1.0686	0.0434	0.0120	1.1376
	Rental	0.2474	0.2394	0.8136	0.0287	0.0246	1.3537
	Relocation	0.8434	0.2819	1.1995	0.1935	0.1992	2.7175
	Subtotal	1.0908	0.5669	4.3899	0.3362	0.3056	6.6894
Capital Stock	Losses						
	Structural	2.1860	0.5414	1.7368	0.5421	0.3039	5.3102
	Non_Structural	10.7853	2.0957	3.5352	1.3943	0.6203	18.4308
	Content	3.8177	0.4950	1.7011	0.8540	0.3081	7.1759
	Inventory	0.0000	0.0000	0.0544	0.1357	0.0063	0.1964
	Subtotal	16.7890	3.1321	7.0275	2.9261	1.2386	31.1133
	Total	17.88	3.70	11.42	3.26	1.54	37.80

Transportation and Utility Lifeline Losses

For the transportation and utility lifeline systems, Hazus computes the direct repair cost for each component only. There are no losses computed by Hazus for business interruption due to lifeline outages. Tables 12 & 13 provide a detailed breakdown in the expected lifeline losses.

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Highway	Segments	200.7307	0.0000	0.00
	Bridges	116.7909	1.9146	1.64
	Tunnels	0.0000	0.0000	0.00
	Subtotal	317.5216	1.9146	
Railways	Segments	11.9909	0.0000	0.00
	Bridges	0.0621	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	12.0530	0.0000	
Light Rail	Segments	9.2680	0.0000	0.00
	Bridges	0.0000	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	2.6630	0.2180	8.19
	Subtotal	11.9310	0.2180	
Bus	Facilities	1.2535	0.1104	8.81
	Subtotal	1.2535	0.1104	
Ferry	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Port	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Airport	Facilities	0.0000	0.0000	0.00
	Runways	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
l	Total	342.76	2.24	

Table 12: Transportation System Economic Losses

(Millions of dollars)

Table 13: Utility System Economic Losses

(Millions of dollars)

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Potable Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	7.1591	0.0000	0.00
	Subtotal	7.1591	0.0000	
Waste Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	4.2954	0.0000	0.00
	Subtotal	4.2954	0.0000	
Natural Gas	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	2.8636	0.0000	0.00
	Subtotal	2.8636	0.0000	
Oil Systems	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Electrical Power	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Communication	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
	Total	14.32	0.00	

Appendix A: County Listing for the Region

Middlesex,CT

Appendix B: Regional Population and Building Value Data

			Build	Building Value (millions of de		
State	tate County Name		Residential	Non-Residential	Total	
Connecticut						
	Middlesex	13,260	1,661	400	2,061	
Total Region		13,260	1,661	400	2,061	

Hazus: Earthquake Global Risk Report

Region Name:	Clinton
Earthquake Scenario:	Stamford
Print Date:	October 16, 2019

Disclaimer: This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, geotechnical, and observed ground motion data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building and Lifeline Inventory	4	
Building Inventory		
Critical Facility Inventory		
Transportation and Utility Lifeline Inventory		
Earthquake Scenario Parameters	7	
Direct Earthquake Damage	8	
Buildings Damage		
Essential Facilities Damage		
Transportation and Utility Lifeline Damage		
Induced Earthquake Damage	14	
Fire Following Earthquake		
Debris Generation		
Social Impact	15	
Shelter Requirements		
Casualties		
Economic Loss	17	
Building Related Losses		
Transportation and Utility Lifeline Losses		

Appendix A: County Listing for the Region Appendix B: Regional Population and Building Value Data

General Description of the Region

Hazus-MH is a regional earthquake loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The earthquake loss estimates provided in this report was based on a region that includes 1 county(ies) from the following state(s):

Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.38 square miles and contains 4 census tracts. There are over 5 thousand households in the region which has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by Total Region and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,061 (millions of dollars). Approximately 91.00 % of the buildings (and 81.00% of the building value) are associated with residential housing.

The replacement value of the transportation and utility lifeline systems is estimated to be 342 and 14 (millions of dollars), respectively.

Building and Lifeline Inventory

Building Inventory

Hazus estimates that there are 5 thousand buildings in the region which have an aggregate total replacement value of 2,061 (millions of dollars). Appendix B provides a general distribution of the building value by Total Region and County.

In terms of building construction types found in the region, wood frame construction makes up 83% of the building inventory. The remaining percentage is distributed between the other general building types.

Critical Facility Inventory

Hazus breaks critical facilities into two (2) groups: essential facilities and high potential loss facilities (HPL). Essential facilities include hospitals, medical clinics, schools, fire stations, police stations and emergency operations facilities. High potential loss facilities include dams, levees, military installations, nuclear power plants and hazardous material sites.

For essential facilities, there are 0 hospitals in the region with a total bed capacity of beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities. With respect to high potential loss facilities (HPL), there are no dams identified within the inventory. The inventory also includes 3 hazardous material sites, no military installations and no nuclear power plants.

Transportation and Utility Lifeline Inventory

Within Hazus, the lifeline inventory is divided between transportation and utility lifeline systems. There are seven (7) transportation systems that include highways, railways, light rail, bus, ports, ferry and airports. There are six (6) utility systems that include potable water, wastewater, natural gas, crude & refined oil, electric power and communications. The lifeline inventory data are provided in Tables 1 and 2.

The total value of the lifeline inventory is over 356.00 (millions of dollars). This inventory includes over 24.23 miles of highways, 19 bridges, 444.28 miles of pipes.

System	Component	# Locations/ # Segments	Replacement value (millions of dollars)
Highway	Bridges	19	116.7909
	Segments	11	200.7307
	Tunnels	0	0.0000
		Subtotal	317.5216
Railways	Bridges	1	0.0621
	Facilities	0	0.0000
	Segments	3	11.9909
	Tunnels	0	0.0000
		Subtotal	12.0530
Light Rail	Bridges	0	0.0000
	Facilities	1	2.6630
	Segments	2	9.2680
	Tunnels	0	0.0000
		Subtotal	11.9310
Bus	Facilities	1	1.2535
		Subtotal	1.2535
Ferry	Facilities	0	0.0000
-		Subtotal	0.0000
Port	Facilities	0	0.0000
		Subtotal	0.0000
Airport	Facilities	0	0.0000
	Runways	0	0.0000
		Subtotal	0.0000
		Total	342.80

System	Component	# Locations / Segments	Replacement value (millions of dollars)		
Potable Water	Distribution Lines	NA	7.1591		
	Facilities	0	0.0000		
	Pipelines	0	0.0000		
		Subtotal	7.1591		
Waste Water	Distribution Lines	NA	4.2954		
	Facilities	0	0.0000		
	Pipelines	0	0.0000		
		Subtotal	4.2954		
Natural Gas	Distribution Lines	NA	2.8636		
	Facilities	0	0.0000		
	Pipelines	0	0.0000		
		Subtotal	2.8636		
Oil Systems	Facilities	0	0.0000		
	Pipelines	0	0.0000		
		Subtotal	0.0000		
Electrical Power	Facilities	0	0.0000		
		Subtotal	0.0000		
Communication	Facilities	0	0.0000		
		Subtotal	0.0000		
		Total	14.30		

Table 2: Utility System Lifeline Inventory

Earthquake Scenario

Hazus uses the following set of information to define the earthquake parameters used for the earthquake loss estimate provided in this report.

Scenario Name	Stamford
Type of Earthquake	Arbitrary
Fault Name	NA
Historical Epicenter ID #	NA
Probabilistic Return Period	NA
Longitude of Epicenter	-73.56
Latitude of Epicenter	41.11
Earthquake Magnitude	5.70
Depth (km)	10.00
Rupture Length (Km)	NA
Rupture Orientation (degrees)	NA
Attenuation Function	Central & East US (CEUS 2008)

Direct Earthquake Damage

Building Damage

Hazus estimates that about 34 buildings will be at least moderately damaged. This is over 1.00 % of the buildings in the region. There are an estimated 0 buildings that will be damaged beyond repair. The definition of the 'damage states' is provided in Volume 1: Chapter 5 of the Hazus technical manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 below summarizes the expected damage by general building type.

Damage Categories by General Occupancy Type

Table 3: Expected Building Damage by Occupancy

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	27.38	0.48	1.22	0.87	0.36	1.13	0.05	1.58	0.00	1.14
Commercial	286.19	5.05	13.42	9.62	4.72	14.97	0.63	21.14	0.04	21.22
Education	9.43	0.17	0.41	0.29	0.14	0.44	0.02	0.58	0.00	0.72
Government	10.37	0.18	0.45	0.33	0.16	0.50	0.02	0.64	0.00	0.61
Industrial	120.61	2.13	5.28	3.79	1.87	5.93	0.23	7.58	0.01	6.62
Other Residential	494.12	8.71	30.69	22.00	11.59	36.77	0.57	19.18	0.03	14.18
Religion	16.95	0.30	0.73	0.52	0.28	0.88	0.04	1.40	0.00	1.82
Single Family	4704.75	82.98	87.30	62.59	12.41	39.38	1.43	47.90	0.10	53.68
Total	5,670		139		32		3		0	

	None		Sligh	t	Modera	te	Extensiv	/e	Complet	te
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Wood	4767.03	84.08	79.23	56.80	7.03	22.29	0.48	15.99	0.00	0.00
Steel	226.05	3.99	9.03	6.47	3.04	9.63	0.29	9.68	0.01	3.49
Concrete	39.12	0.69	1.45	1.04	0.44	1.39	0.02	0.73	0.00	0.00
Precast	14.39	0.25	0.79	0.57	0.51	1.61	0.09	3.09	0.00	0.60
RM	55.97	0.99	1.86	1.33	0.96	3.05	0.13	4.48	0.00	0.00
URM	305.10	5.38	23.77	17.04	10.30	32.67	1.73	57.98	0.18	95.90
МН	262.13	4.62	23.37	16.75	9.26	29.37	0.24	8.05	0.00	0.00
Total	5,670		139		32		3		0	

Table 4: Expected Building Damage by Building Type (All Design Levels)

*Note:

RM Reinforced Masonry

URM Unreinforced Masonry

MH Manufactured Housing

Essential Facility Damage

Before the earthquake, the region had hospital beds available for use. On the day of the earthquake, the model estimates that only hospital beds (%) are available for use by patients already in the hospital and those injured by the earthquake. After one week, % of the beds will be back in service. By 30 days, % will be operational.

		# Facilities				
Classification	Total	At Least Moderate Damage > 50%	Complete Damage > 50%	With Functionality > 50% on day 1		
Hospitals	0	0	0	0		
Schools	5	0	0	5		
EOCs	1	0	0	1		
PoliceStations	1	0	0	1		
FireStations	2	0	0	2		

Table 5: Expected Damage to Essential Facilities

Transportation Lifeline Damage

	Component			Number of Location	ons_	
System	Component	Locations/	With at Least	With Complete	With Fun	ctionality > 50 %
		Segments	Mod. Damage	Damage	After Day 1	After Day 7
Highway	Segments	11	0	0	11	11
	Bridges	19	0	0	19	19
	Tunnels	0	0	0	0	0
Railways	Segments	3	0	0	1	1
	Bridges	1	0	0	1	1
	Tunnels	0	0	0	0	0
	Facilities	0	0	0	0	0
Light Rail	Segments	2	0	0	2	2
	Bridges	0	0	0	0	0
	Tunnels	0	0	0	0	0
	Facilities	1	0	0	1	1
Bus	Facilities	1	0	0	1	1
Ferry	Facilities	0	0	0	0	0
Port	Facilities	0	0	0	0	0
Airport	Facilities	0	0	0	0	0
	Runways	0	0	0	0	0

Table 6: Expected Damage to the Transportation Systems

Table 6 provides damage estimates for the transportation system.

Note: Roadway segments, railroad tracks and light rail tracks are assumed to be damaged by ground failure only. If ground failure maps are not provided, damage estimates to these components will not be computed.

Tables 7-9 provide information on the damage to the utility lifeline systems. Table 7 provides damage to the utility system facilities. Table 8 provides estimates on the number of leaks and breaks by the pipelines of the utility systems. For electric power and potable water, Hazus performs a simplified system performance analysis. Table 9 provides a summary of the system performance information.

	# of Locations								
System	Total #	With at Least	With Complete	with Functionality > 50 %					
		Moderate Damage	Damage	After Day 1	After Day 7				
Potable Water	0	0	0	0	0				
Waste Water	0	0	0	0	0				
Natural Gas	0	0	0	0	0				
Oil Systems	0	0	0	0	0				
Electrical Power	0	0	0	0	0				
Communication	0	0	0	0	0				

Table 7 : Expected Utility System Facility Damage

Table 8 : Expected Utility System Pipeline Damage (Site Specific)

System	Total Pipelines Length (miles)	Number of Leaks	Number of Breaks
Potable Water	222	0	0
Waste Water	133	0	0
Natural Gas	89	0	0
Oil	0	0	0

Table 9: Expected Potable Water and Electric Power System Performance

	Total # of	Number of Households without Service					
	Households	At Day 1	At Day 3	At Day 7	At Day 30	At Day 90	
Potable Water							
Electric Power							

Induced Earthquake Damage

Fire Following Earthquake

Fires often occur after an earthquake. Because of the number of fires and the lack of water to fight the fires, they can often burn out of control. Hazus uses a Monte Carlo simulation model to estimate the number of ignitions and the amount of burnt area. For this scenario, the model estimates that there will be 0 ignitions that will burn about 0.00 sq. mi 0.00 % of the region's total area.) The model also estimates that the fires will displace about 0 people and burn about 0 (millions of dollars) of building value.

Debris Generation

Hazus estimates the amount of debris that will be generated by the earthquake. The model breaks the debris into two general categories: a) Brick/Wood and b) Reinforced Concrete/Steel. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 0 tons of debris will be generated. Of the total amount, Brick/Wood comprises 72.00% of the total, with the remainder being Reinforced Concrete/Steel. If the debris tonnage is converted to an estimated number of truckloads, it will require 0 truckloads (@25 tons/truck) to remove the debris generated by the earthquake.

Earthquake Debris (millions of tons)						
Brick/ Wood	Reinforced Concrete/Steel	<u>Total Debris</u>	Truck Load			
0.00	0.00	0.00	0 (@25 tons/truck)			

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the earthquake and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 1 households to be displaced due to the earthquake. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Casualties

Hazus estimates the number of people that will be injured and killed by the earthquake. The casualties are broken down into four (4) severity levels that describe the extent of the injuries. The levels are described as follows;

Injuries will require medical attention but hospitalization is not needed.

Injuries will require hospitalization but are not considered life-threatening

Injuries will require hospitalization and can become life threatening if not

- Severity Level 1:
- · Severity Level 2:
- · Severity Level 3:
 - promptly treated.
- Severity Level 4:
- 4: Victims are killed by the earthquake.

The casualty estimates are provided for three (3) times of day: 2:00 AM, 2:00 PM and 5:00 PM. These times represent the periods of the day that different sectors of the community are at their peak occupancy loads. The 2:00 AM estimate considers that the residential occupancy load is maximum, the 2:00 PM estimate considers that the educational, commercial and industrial sector loads are maximum and 5:00 PM represents peak commute time.

Table 10 provides a summary of the casualties estimated for this earthquake

Table 10: Casualty Estimates

		Level 1	Level 2	Level 3	Level 4
2 AM	Commercial	0.01	0.00	0.00	0.00
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.01	0.00	0.00	0.00
	Other-Residential	0.18	0.02	0.00	0.00
	Single Family	0.27	0.03	0.00	0.00
	Total	0	0	0	0
2 PM	Commercial	0.64	0.08	0.01	0.01
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.21	0.03	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.11	0.01	0.00	0.00
	Other-Residential	0.03	0.00	0.00	0.00
	Single Family	0.05	0.00	0.00	0.00
	Total	1	0	0	0
5 PM	Commercial	0.46	0.06	0.00	0.01
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.01	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.07	0.01	0.00	0.00
	Other-Residential	0.07	0.01	0.00	0.00
	Single Family	0.10	0.01	0.00	0.00
	Total	1	0	0	0

Economic Loss

The total economic loss estimated for the earthquake is 3.50 (millions of dollars), which includes building and lifeline related losses based on the region's available inventory. The following three sections provide more detailed information about these losses.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the earthquake. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the earthquake.

The total building-related losses were 3.37 (millions of dollars); 23 % of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 56 % of the total loss. Table 11 below provides a summary of the losses associated with the building damage.

Table 11: Building-Related Economic Loss Estimates

_	(Millions of dollars)									
Category	Area	Single Family	Other Residential	Commercial	Industrial	Others	Total			
Income Los	ses									
	Wage	0.0000	0.0035	0.1507	0.0062	0.0096	0.1700			
	Capital-Related	0.0000	0.0015	0.1197	0.0038	0.0016	0.1266			
	Rental	0.0284	0.0356	0.0990	0.0029	0.0026	0.1685			
	Relocation	0.0915	0.0380	0.1296	0.0187	0.0223	0.3001			
	Subtotal	0.1199	0.0786	0.4990	0.0316	0.0361	0.7652			
Capital Stoc	k Losses									
	Structural	0.2804	0.0793	0.1886	0.0536	0.0355	0.6374			
	Non_Structural	0.9298	0.1986	0.2886	0.0961	0.0503	1.5634			
	Content	0.1811	0.0279	0.1067	0.0543	0.0185	0.3885			
	Inventory	0.0000	0.0000	0.0033	0.0087	0.0003	0.0123			
	Subtotal	1.3913	0.3058	0.5872	0.2127	0.1046	2.6016			
	Total	1.51	0.38	1.09	0.24	0.14	3.37			

Transportation and Utility Lifeline Losses

For the transportation and utility lifeline systems, Hazus computes the direct repair cost for each component only. There are no losses computed by Hazus for business interruption due to lifeline outages. Tables 12 & 13 provide a detailed breakdown in the expected lifeline losses.

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Highway	Segments	200.7307	0.0000	0.00
	Bridges	116.7909	0.0871	0.07
	Tunnels	0.0000	0.0000	0.00
	Subtotal	317.5216	0.0871	
Railways	Segments	11.9909	0.0000	0.00
	Bridges	0.0621	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	12.0530	0.0000	
Light Rail	Segments	9.2680	0.0000	0.00
	Bridges	0.0000	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	2.6630	0.0303	1.14
	Subtotal	11.9310	0.0303	
Bus	Facilities	1.2535	0.0146	1.16
	Subtotal	1.2535	0.0146	
Ferry	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Port	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Airport	Facilities	0.0000	0.0000	0.00
	Runways	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
l	Total	342.76	0.13	

Table 12: Transportation System Economic Losses

(Millions of dollars)

Table 13: Utility System Economic Losses

(Millions of dollars)

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Potable Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	7.1591	0.0000	0.00
	Subtotal	7.1591	0.0000	
Waste Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	4.2954	0.0000	0.00
	Subtotal	4.2954	0.0000	
Natural Gas	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	2.8636	0.0000	0.00
	Subtotal	2.8636	0.0000	
Oil Systems	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Electrical Power	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Communication	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
	Total	14.32	0.00	

Appendix A: County Listing for the Region

Middlesex,CT

Appendix B: Regional Population and Building Value Data

			Building Value (millions of dollars)				
State	County Name	Population	Residential	Non-Residential	Total		
Connecticut							
	Middlesex	13,260	1,661	400	2,061		
Total Region		13,260	1,661	400	2,061		

Hazus: Earthquake Global Risk Report

October 16, 2019

Region Name:	Clinton
Earthquake Scenario:	Annualized

Print Date:

Disclaimer: This version of Hazus utilizes 2010 Census Data. Totals only reflect data for those census tracts/blocks included in the user's study region.

The estimates of social and economic impacts contained in this report were produced using Hazus loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, geotechnical, and observed ground motion data.

Table of Contents

Section	Page #	
General Description of the Region	3	
Building and Lifeline Inventory	4	
Building Inventory		
Critical Facility Inventory		
Transportation and Utility Lifeline Inventory		
Earthquake Scenario Parameters	7	
Direct Earthquake Damage	8	
Buildings Damage		
Essential Facilities Damage		
Transportation and Utility Lifeline Damage		
Induced Earthquake Damage	14	
Fire Following Earthquake		
Debris Generation		
Social Impact	15	
Shelter Requirements		
Casualties		
Economic Loss	17	
Building Related Losses		
Transportation and Utility Lifeline Losses		

Appendix A: County Listing for the Region Appendix B: Regional Population and Building Value Data

General Description of the Region

Hazus-MH is a regional earthquake loss estimation model that was developed by the Federal Emergency Management Agency (FEMA) and the National Institute of Building Sciences. The primary purpose of Hazus is to provide a methodology and software application to develop multi-hazard losses at a regional scale. These loss estimates would be used primarily by local, state and regional officials to plan and stimulate efforts to reduce risks from multi-hazards and to prepare for emergency response and recovery.

The earthquake loss estimates provided in this report was based on a region that includes 1 county(ies) from the following state(s):

Connecticut

Note:

Appendix A contains a complete listing of the counties contained in the region.

The geographical size of the region is 16.38 square miles and contains 4 census tracts. There are over 5 thousand households in the region which has a total population of 13,260 people (2010 Census Bureau data). The distribution of population by Total Region and County is provided in Appendix B.

There are an estimated 5 thousand buildings in the region with a total building replacement value (excluding contents) of 2,061 (millions of dollars). Approximately 91.00 % of the buildings (and 81.00% of the building value) are associated with residential housing.

The replacement value of the transportation and utility lifeline systems is estimated to be 342 and 14 (millions of dollars), respectively.

Building and Lifeline Inventory

Building Inventory

Hazus estimates that there are 5 thousand buildings in the region which have an aggregate total replacement value of 2,061 (millions of dollars). Appendix B provides a general distribution of the building value by Total Region and County.

In terms of building construction types found in the region, wood frame construction makes up 83% of the building inventory. The remaining percentage is distributed between the other general building types.

Critical Facility Inventory

Hazus breaks critical facilities into two (2) groups: essential facilities and high potential loss facilities (HPL). Essential facilities include hospitals, medical clinics, schools, fire stations, police stations and emergency operations facilities. High potential loss facilities include dams, levees, military installations, nuclear power plants and hazardous material sites.

For essential facilities, there are 0 hospitals in the region with a total bed capacity of beds. There are 5 schools, 2 fire stations, 1 police stations and 1 emergency operation facilities. With respect to high potential loss facilities (HPL), there are no dams identified within the inventory. The inventory also includes 3 hazardous material sites, no military installations and no nuclear power plants.

Transportation and Utility Lifeline Inventory

Within Hazus, the lifeline inventory is divided between transportation and utility lifeline systems. There are seven (7) transportation systems that include highways, railways, light rail, bus, ports, ferry and airports. There are six (6) utility systems that include potable water, wastewater, natural gas, crude & refined oil, electric power and communications. The lifeline inventory data are provided in Tables 1 and 2.

The total value of the lifeline inventory is over 356.00 (millions of dollars). This inventory includes over 24.23 miles of highways, 19 bridges, 444.28 miles of pipes.

System	Component	# Locations/ # Segments	Replacement value (millions of dollars)
Highway	Bridges	19	116.7909
	Segments	11	200.7307
	Tunnels	0	0.0000
		Subtotal	317.5216
Railways	Bridges	1	0.0621
	Facilities	0	0.0000
	Segments	3	11.9909
	Tunnels	0	0.0000
		Subtotal	12.0530
Light Rail	Bridges	0	0.0000
	Facilities	1	2.6630
	Segments	2	9.2680
	Tunnels	0	0.0000
		Subtotal	11.9310
Bus	Facilities	1	1.2535
		Subtotal	1.2535
Ferry	Facilities	0	0.0000
-		Subtotal	0.0000
Port	Facilities	0	0.0000
		Subtotal	0.0000
Airport	Facilities	0	0.0000
	Runways	0	0.0000
		Subtotal	0.0000
		Total	342.80

System	Component	# Locations / Segments	Replacement value (millions of dollars)				
Potable Water	Distribution Lines	NA	7.1591				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	7.1591				
Waste Water	Distribution Lines	NA	4.2954				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	4.2954				
Natural Gas	Distribution Lines	NA	2.8636				
	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	2.8636				
Oil Systems	Facilities	0	0.0000				
	Pipelines	0	0.0000				
		Subtotal	0.0000				
Electrical Power	Facilities	0	0.0000				
		Subtotal	0.0000				
Communication	Facilities	0	0.0000				
		Subtotal	0.0000				
		Total	14.30				

Table 2: Utility System Lifeline Inventory

Earthquake Scenario

Hazus uses the following set of information to define the earthquake parameters used for the earthquake loss estimate provided in this report.

Scenario Name	Annualized
Type of Earthquake	Probabilistic
Fault Name	NA
Historical Epicenter ID #	NA
Probabilistic Return Period	Annualized
Longitude of Epicenter	NA
Latitude of Epicenter	NA
Earthquake Magnitude	NA
Depth (km)	NA
Rupture Length (Km)	NA
Rupture Orientation (degrees)	NA
Attenuation Function	NA

Direct Earthquake Damage

Building Damage

Hazus estimates that about 14 buildings will be at least moderately damaged. This is over 0.00 % of the buildings in the region. There are an estimated 0 buildings that will be damaged beyond repair. The definition of the 'damage states' is provided in Volume 1: Chapter 5 of the Hazus technical manual. Table 3 below summarizes the expected damage by general occupancy for the buildings in the region. Table 4 below summarizes the expected damage by general building type.

Damage Categories by General Occupancy Type

Table 3: Expected Building Damage by Occupancy

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Agriculture	10.00	0.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Commercial	111.00	2.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Education	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Government	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Industrial	36.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Residential	445.00	8.39	20.00	20.00	6.00	42.86	0.00	0.00	0.00	0.00
Religion	6.00	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Single Family	4698.00	88.54	80.00	80.00	8.00	57.14	0.00	0.00	0.00	0.00
Total	5,306		100		14		0		0	

	None		Slight		Moderate		Extensive		Complete	
	Count	(%)	Count	(%)	Count	(%)	Count	(%)	Count	(%)
Wood	4720.00	88.96	71.00	71.00	5.00	35.71	0.00	0.00	0.00	0.00
Steel	72.00	1.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Concrete	2.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Precast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
RM	9.00	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
URM	244.00	4.60	9.00	9.00	3.00	21.43	0.00	0.00	0.00	0.00
мн	259.00	4.88	20.00	20.00	6.00	42.86	0.00	0.00	0.00	0.00
Total	5,306		100		14		0		0	

Table 4: Expected Building Damage by Building Type (All Design Levels)

*Note:

RM Reinforced Masonry

URM Unreinforced Masonry

MH Manufactured Housing

Essential Facility Damage

Before the earthquake, the region had hospital beds available for use. On the day of the earthquake, the model estimates that only hospital beds (%) are available for use by patients already in the hospital and those injured by the earthquake. After one week, % of the beds will be back in service. By 30 days, % will be operational.

		# Facilities				
Classification	Total	At Least Moderate Damage > 50%	Complete Damage > 50%	With Functionality > 50% on day 1		
Hospitals	0	0	0	0		
Schools	5	0	0	5		
EOCs	1	0	0	1		
PoliceStations	1	0	0	1		
FireStations	2	0	0	2		

Table 5: Expected Damage to Essential Facilities

Transportation Lifeline Damage

Number of Locations							
System	Component	Locations/	With at Least	With Complete	With Functionality > 50 %		
		Segments	Mod. Damage	Damage	After Day 1	After Day 7	
Highway	Segments	11	0	0	11	11	
	Bridges	19	0	0	19	19	
	Tunnels	0	0	0	0	0	
Railways	Segments	3	0	0	1	1	
	Bridges	1	0	0	1	1	
	Tunnels	0	0	0	0	0	
	Facilities	0	0	0	0	0	
Light Rail	Segments	2	0	0	2	2	
	Bridges	0	0	0	0	0	
	Tunnels	0	0	0	0	0	
	Facilities	1	0	0	1	1	
Bus	Facilities	1	0	0	1	1	
Ferry	Facilities	0	0	0	0	0	
Port	Facilities	0	0	0	0	0	
Airport	Facilities	0	0	0	0	0	
	Runways	0	0	0	0	0	

Table 6: Expected Damage to the Transportation Systems

Table 6 provides damage estimates for the transportation system.

Note: Roadway segments, railroad tracks and light rail tracks are assumed to be damaged by ground failure only. If ground failure maps are not provided, damage estimates to these components will not be computed.

Tables 7-9 provide information on the damage to the utility lifeline systems. Table 7 provides damage to the utility system facilities. Table 8 provides estimates on the number of leaks and breaks by the pipelines of the utility systems. For electric power and potable water, Hazus performs a simplified system performance analysis. Table 9 provides a summary of the system performance information.

	# of Locations								
System	Total #	With at Least	With Complete	with Functionality > 50 %					
		Moderate Damage	Damage	After Day 1	After Day 7				
Potable Water	0	0	0	0	0				
Waste Water	0	0	0	0	0				
Natural Gas	0	0	0	0	0				
Oil Systems	0	0	0	0	0				
Electrical Power	0	0	0	0	0				
Communication	0	0	0	0	0				

Table 7 : Expected Utility System Facility Damage

Table 8 : Expected Utility System Pipeline Damage (Site Specific)

System	Total Pipelines Length (miles)	Number of Leaks	Number of Breaks
Potable Water	222	0	0
Waste Water	133	0	0
Natural Gas	89	0	0
Oil	0	0	0

Table 9: Expected Potable Water and Electric Power System Performance

	Total # of	Number of Households without Service				
	Households	At Day 1	At Day 3	At Day 7	At Day 30	At Day 90
Potable Water						
Electric Power						

Induced Earthquake Damage

Fire Following Earthquake

Fires often occur after an earthquake. Because of the number of fires and the lack of water to fight the fires, they can often burn out of control. Hazus uses a Monte Carlo simulation model to estimate the number of ignitions and the amount of burnt area. For this scenario, the model estimates that there will be 0 ignitions that will burn about 0.00 sq. mi 0.00 % of the region's total area.) The model also estimates that the fires will displace about 0 people and burn about 0 (millions of dollars) of building value.

Debris Generation

Hazus estimates the amount of debris that will be generated by the earthquake. The model breaks the debris into two general categories: a) Brick/Wood and b) Reinforced Concrete/Steel. This distinction is made because of the different types of material handling equipment required to handle the debris.

The model estimates that a total of 0 tons of debris will be generated. Of the total amount, Brick/Wood comprises 72.00% of the total, with the remainder being Reinforced Concrete/Steel. If the debris tonnage is converted to an estimated number of truckloads, it will require 0 truckloads (@25 tons/truck) to remove the debris generated by the earthquake.

Earthquake Debris (millions of tons)					
Brick/ Wood	Reinforced Concrete/Steel	<u>Total Debris</u>	Truck Load		
0.00	0.00	0.00	0 (@25 tons/truck)		

Social Impact

Shelter Requirement

Hazus estimates the number of households that are expected to be displaced from their homes due to the earthquake and the number of displaced people that will require accommodations in temporary public shelters. The model estimates 1 households to be displaced due to the earthquake. Of these, 0 people (out of a total population of 13,260) will seek temporary shelter in public shelters.

Casualties

Hazus estimates the number of people that will be injured and killed by the earthquake. The casualties are broken down into four (4) severity levels that describe the extent of the injuries. The levels are described as follows;

Injuries will require medical attention but hospitalization is not needed.

Injuries will require hospitalization but are not considered life-threatening

Injuries will require hospitalization and can become life threatening if not

- Severity Level 1:
- · Severity Level 2:
- · Severity Level 3:
 - promptly treated.
- Severity Level 4:
- 4: Victims are killed by the earthquake.

The casualty estimates are provided for three (3) times of day: 2:00 AM, 2:00 PM and 5:00 PM. These times represent the periods of the day that different sectors of the community are at their peak occupancy loads. The 2:00 AM estimate considers that the residential occupancy load is maximum, the 2:00 PM estimate considers that the educational, commercial and industrial sector loads are maximum and 5:00 PM represents peak commute time.

Table 10 provides a summary of the casualties estimated for this earthquake

Table 10: Casualty Estimates

		Level 1	Level 2	Level 3	Level 4
2 AM	Commercial	0.00	0.00	0.00	0.00
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.00	0.00	0.00	0.00
	Other-Residential	0.00	0.00	0.00	0.00
	Single Family	0.00	0.00	0.00	0.00
	Total	0	0	0	0
2 PM	Commercial	0.00	0.00	0.00	0.00
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.00	0.00	0.00	0.00
	Other-Residential	0.00	0.00	0.00	0.00
	Single Family	0.00	0.00	0.00	0.00
	Total	0	0	0	0
5 PM	Commercial	0.00	0.00	0.00	0.00
	Commuting	0.00	0.00	0.00	0.00
	Educational	0.00	0.00	0.00	0.00
	Hotels	0.00	0.00	0.00	0.00
	Industrial	0.00	0.00	0.00	0.00
	Other-Residential	0.00	0.00	0.00	0.00
	Single Family	0.00	0.00	0.00	0.00
	Total	0	0	0	0

Economic Loss

The total economic loss estimated for the earthquake is 0.16 (millions of dollars), which includes building and lifeline related losses based on the region's available inventory. The following three sections provide more detailed information about these losses.

Building-Related Losses

The building losses are broken into two categories: direct building losses and business interruption losses. The direct building losses are the estimated costs to repair or replace the damage caused to the building and its contents. The business interruption losses are the losses associated with inability to operate a business because of the damage sustained during the earthquake. Business interruption losses also include the temporary living expenses for those people displaced from their homes because of the earthquake.

The total building-related losses were 0.02 (millions of dollars); 15 % of the estimated losses were related to the business interruption of the region. By far, the largest loss was sustained by the residential occupancies which made up over 63 % of the total loss. Table 11 below provides a summary of the losses associated with the building damage.

Table 11: Building-Related Economic Loss Estimates

(Millions	of	dol	lars
-----------	----	-----	------

Category	Area	Single Family	Other Residential	Commercial	Industrial	Others	Total
Income Losses							
	Wage	0.0000	0.0000	0.0007	0.0000	0.0000	0.0007
	Capital-Related	0.0000	0.0000	0.0006	0.0000	0.0000	0.0006
	Rental	0.0001	0.0002	0.0004	0.0000	0.0000	0.0007
	Relocation	0.0005	0.0002	0.0006	0.0001	0.0001	0.0015
	Subtotal	0.0006	0.0004	0.0023	0.0001	0.0001	0.0035
Capital Stock Losses							
	Structural	0.0015	0.0004	0.0009	0.0002	0.0001	0.0031
	Non_Structural	0.0074	0.0016	0.0021	0.0008	0.0003	0.0122
	Content	0.0026	0.0003	0.0011	0.0005	0.0002	0.0047
	Inventory	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Subtotal	0.0115	0.0023	0.0041	0.0015	0.0006	0.0200
	Total	0.01	0.00	0.01	0.00	0.00	0.02

Transportation and Utility Lifeline Losses

For the transportation and utility lifeline systems, Hazus computes the direct repair cost for each component only. There are no losses computed by Hazus for business interruption due to lifeline outages. Tables 12 & 13 provide a detailed breakdown in the expected lifeline losses.

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Highway	Segments	200.7307	0.0000	0.00
	Bridges	116.7909	0.0871	0.07
	Tunnels	0.0000	0.0000	0.00
	Subtotal	317.5216	0.0871	
Railways	Segments	11.9909	0.0000	0.00
	Bridges	0.0621	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	12.0530	0.0000	
Light Rail	Segments	9.2680	0.0000	0.00
	Bridges	0.0000	0.0000	0.00
	Tunnels	0.0000	0.0000	0.00
	Facilities	2.6630	0.0303	1.14
	Subtotal	11.9310	0.0303	
Bus	Facilities	1.2535	0.0146	1.16
	Subtotal	1.2535	0.0146	
Ferry	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Port	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Airport	Facilities	0.0000	0.0000	0.00
	Runways	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
l	Total	342.76	0.13	

Table 12: Transportation System Economic Losses

(Millions of dollars)

Table 13: Utility System Economic Losses

(Millions of dollars)

System	Component	Inventory Value	Economic Loss	Loss Ratio (%)
Potable Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	7.1591	0.0000	0.00
	Subtotal	7.1591	0.0000	
Waste Water	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	4.2954	0.0000	0.00
	Subtotal	4.2954	0.0000	
Natural Gas	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Distribution Lines	2.8636	0.0000	0.00
	Subtotal	2.8636	0.0000	
Oil Systems	Pipelines	0.0000	0.0000	0.00
	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Electrical Power	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
Communication	Facilities	0.0000	0.0000	0.00
	Subtotal	0.0000	0.0000	
	Total	14.32	0.00	

Appendix A: County Listing for the Region

Middlesex,CT

Appendix B: Regional Population and Building Value Data

State	County Name	Population	Building Value (millions of dollars)		
			Residential	Non-Residential	Total
Connecticut					
	Middlesex	13,260	1,661	400	2,061
Total Region		13,260	1,661	400	2,061